VLSI Design Automation

IC Products

- Processors
- CPU, DSP, Controllers
- Memory chips
- RAM,ROM, EEPROM
- Analog
- Mobile communication, audio/video processing
- Programmable
- PLA,FPGA
- Embedded systems
- Used in cars, factories
- Network cards
- System-on-chip (SoC)

Integrated Circuit Revolution

1972: Intel 4004 Microprocessor
Clock speed: 108 KHz
\# Transistors: 2,300
\# l/O pins: 16
Technology: $10 \mu \mathrm{~m}$

Integrated Circuit Revolution

Integrated Circuit Revolution

2005: Sun UltraSpartc T1 8 cores, 4 threads per core Clock speed: 1.2 GHz \# Transistors: 300 million Technology: 90nm CMOS

Integrated Circuit Revolution

2006: Intel Core 2 Duo
Clock speed: 3.73 GHz
\# Transistors: 1 billion
Technology: 65nm CMOS

Integrated Circuit Revolution

2009: Intel Core i7 Quadricore
Technology: 45nm CMOS

Integrated Circuit Revolution

3rd Generation Intel ${ }^{\circledR}$ Core ${ }^{\text {TM }}$ Processor:
22nm Process

Moore's Law

- Gordon Moore predicted in 1965 that the number of transistors that can be integrated on a die would double every 18 months.

Semiconductor Growth

Processor Power (Watts)

Intel Microprocessor Performance

Device Complexity

- Exponential increase in device complexity
- Increasing with Moore's law (or faster)!
- Require exponential increases in design productivity

We have exponentially more transistors!

Heterogeneity on Chip

- Greater diversity of on chip elements
- Processors
- Software
- Memory
- Analog

More transistors doing different things!

Stronger Market Pressures

- Time-to-market
- Decreasing design window
- Less tolerance for design revisions

How Are We Doing?

Evolution of Design Methodology

- We are now entering the era of block-based design

Evolution of SoC Platforms

2 Cores: Philips' Nexperia PNX8850 SoC platform for High-end digital video (2001)

What's Happening in SoCs?

- Technology: no slow-down in sight!

Faster and smaller transistors: $90 \rightarrow 65 \rightarrow 45 \rightarrow 32 \rightarrow 22 \mathrm{~nm}$
\rightarrow... but slower wires, lower voltage, more noise!
$\checkmark 80 \%$ or more of the delay of critical paths will be due to interconnects

- Design complexity: from 2 to 10 to 100 cores!
\rightarrow Design reuse is essential
\rightarrow...but differentiation/innovation is key for winning on the market!
- Performance and power:
\rightarrow Performance requirements keep going up
\rightarrow...but power budgets don't!

Communication Architectures

- Shared bus
\rightarrow Low area
\rightarrow Poor scalability
\rightarrow High energy consumption
- Network-on-Chip
\rightarrow Scalability and modularity
\rightarrow Low energy consumption
\Rightarrow Increase of design complexity

Intel's Teraflops

- 100 Million transistors
- 80 cores, 160 FP engines
- Teraflops perf. @ 62 Watts
- On-die mesh network
- Power aware design

IC Design Steps

IC Design Steps

Circuit Models

- A model of a circuit is an abstraction
- A representation that shows relevant features without associated details

Model Classification

Levels of Abstraction

- Architectural
- A circuit performs a set of operation, such as data computation or transfer
\checkmark HDL models, Flow diagrams, ...
- Logic
- A circuit evaluate a set of logic functions
\checkmark FSMs, Schematics, ...
- Geometrical
- A circuit is a set of geometrical entities
\checkmark Floor plans, layouts, ...

Levels of Abstraction

Views of a Model

- Behavioral
- Describe the function of a circuit regardless of its implementation
- Structural
- Describe a model as an interconnection of components
- Physical
- Relate to the physical object (e.g., transistors) of a design

The Y-chart

The Y-chart

Synthesis

