Espressioni minime mediante il metodo di Quine-Mc Cluskey

Calcolatori Elettronici

Metodo di Quine-Mc Cluskey

Metodo di minimizzazione tabellare

- Facile da tradurre in un algoritmo.
- Il numero di variabili trattare è teoricamente illimitato.
- Facile da estendere al caso di funzioni a più di una uscita.
- · Consiste di due fasi:
 - Ricerca degli implicanti primi;
 - Ricerca della copertura ottima.

Poiché queste due fasi hanno complessità esponenziale è praticamente impossibile trovare la soluzione ottima per un numero di variabili che supera l'ordine di una decina.

Metodo di Quine-Mc Cluskey

L'insieme di implicanti primi di una funzione f è ottenuta applicando ripetutamente, in tutti i modi possibili, la semplificazione

$$x_iP+x_i'P=P$$

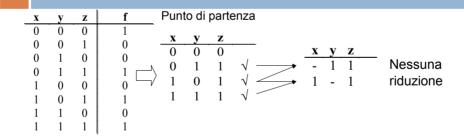
dove P è un prodotto di letterali scelti tra $x_1, ..., x_{i-1}, x_{i+1}, ..., x_n$ in forma diretta o negata.

L'insieme di implicanti è ottenuto partendo dai minterm della funzione.

Le semplificazioni vengono applicate ai termini che differiscono in una sola posizione.

Calcolatori Elettronici

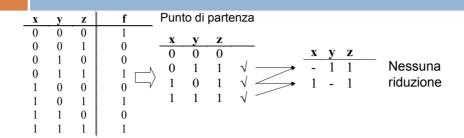
Metodo di Quine-Mc Cluskey



 Si confrontano esaustivamente tutti i termini prodotto (ricavati dal passo precedente);

Si semplificano i termini che differiscono in una sola posizione; Si marcano i termini semplificati per indicare che gli implicanti non sono primi.

Metodo di Quine-Mc Cluskey



 Si crea un nuovo insieme di termini prodotto da confrontare e si ripete il passo 1.

Il processo ha termine quando non ci sono elementi da semplificare

Calcolatori Elettronici

Metodo di Quine-Mc Cluskey

Per ridurre il numero di confronti, i termini vengono divisi in gruppi con elementi aventi lo stesso numero di 1.

I confronti vengono svolti solo tra termini relativi a gruppi che differiscono per un solo 1.

Ad ogni termine associamo un etichetta che rappresenta l'insieme di mintermine che esso ricopre.

a	D	c	a				
0	0	0	0	0	•		Vangana confrontati i grupni
0	0	1	0	2	←	Etichetta	Vengono confrontati i gruppi
0	1	0	0	4			0 e 1
0	0	1	1	3			
0	1	1	0	6			1 e 2
1	1	0	0	12			
0	1	1	1	7			2 e 3
1	1	1	0	14			Calcolatori Elettronici

Metodo di Quine-Mc Cluskey

- I passi da seguire per individuare gli implicanti primi sono i seguenti:
- 1) Si suddividono i minterm in gruppi G_i^0 contenenti termini con i 1 Ciascun minterm è etichettato con l'intero equivalente.
- 2) Partendo dal gruppo di indice i minimo, fino all'indice massimo -1, vengono confrontati i termini dei gruppo G_i^k con quelli del gruppo G_{i+1}^k .

Calcolatori Elettronici

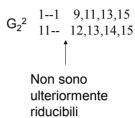
Metodo di Quine-Mc Cluskey

Se due termini differiscono solo nella posizione j, essi vengono combinati in un unico termine che viene inserito in un nuovo gruppo G_i^{k+1} .

- In posizione j viene inserito un trattino "-".
- I due termini vengono spuntati per indicare che non sono implicanti primi
- L'etichetta di questo nuovo termine è ottenuto concatenando le etichette dei termini di partenza.
- 3) Se sono possibili altre combinazioni, k è incrementato e si ritorna al passo 2)

Esempio

$f(a,b,c,d)=\Sigma(1,9,11,12,13,14,15)$



Implicanti Primi

P0(1,9): b' c' d P1(9,11,13,15): a d P2(12,13,14,15): a b

Calcolatori Elettronici

Esempio: comparatore ($a \le b$) 2 bit (0)

a2	a1	b2	b1	q
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Esempio: comparatore ($a \le b$) 2 bit (1)

$G_0^{\ 0}$	0	0	0	0	0 √
G_1^0	0	0	0	1	1 √
O_1	0	0	1	0	2 √
~ ^	0	0	1	1	3 √
G_{2}^{0}	0	1	0	1	5 √
	0	1	1	0	6 √
~ ^	1	0	1	0	10 √
G_3^0	0	1	1	1	7 √
G_4^0	1	0	1	1	11 √
4	1	1	1	1	15 √

G_0^1	0	0	0	-	0,1
O_0	0	0	-	0	0,2
	0	0	-	1	1,3
	0	-	0	1	1,5
G_1^1	0	0	1	-	2,3
	0	-	1	0	2,6
	-	0	1	0	2,10
	0	-	1	1	3,7
O 1	-	0	1	1	3,11
G_2^1	0	1	-	1	5,7
	0	1	1	-	6,7
	1	0	1	-	10,11
G_3^1	-	1	1	1	7,15
\mathbf{c}_3	1	-	1	1	11,15

Calcolatori Elettronici

Esempio: comparatore ($a \le b$) 2 bit (2)

Implicanti Primi P0(0,1,2,3): a2'a1' P1(1,3,5,7): a2'b1 P2(2,3,6,7): a2'b2 P3(2,3,10,11): a1'b2 P4(3,7,11,15): b2b1

Essa viene realizzata mediante la tabella degli implicanti primi.

La tabella degli implicanti primi è una matrice binaria dove:

- gli indici delle righe sono gli implicanti primi individuati;
- gli indici delle colonne sono i minterm della funzione;
- l'elemento a_{i,i} della matrice assume il valore * (o 1) se il minterm della colonna i è coperto dall'implicante della riga i.

P0(1,9): b'c'd P1(9,11,13,15): a d P2(12,13,14,15): a b

	1	9	11	12	13	14	15
P0 P1 P2	*	*					
P1		*	*		*		*
P2				*	*	*	*

Calcolatori Elettronici

Metodo di Quine-Mc Cluskey: ricerca della copertura minima

Si utilizzano criteri di essenzialità e dominanza per ridurre la complessità del problema.

Criterio di Essenzialità

È un criterio di scelta (aumenta l'insieme di copertura) e, di conseguenza, di semplificazione poiché identifica ed estrae gli implicanti primi essenziali;

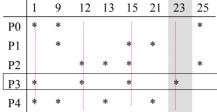
Criterio di Dominanza

È un criterio di sola semplificazione poiché riduce la dimensione dalla tabella di copertura eliminando righe (implicanti/mintermini) o colonne (mintermini) senza operare alcuna scelta

Criterio di Essenzialità:

Se una colonna contiene un solo 1, la riga che gli corrisponde è relativa ad un implicante primo essenziale (riga essenziale).

La riga essenziale e le colonne da essa coperte vengono eliminate dalla tabella. All'insieme di copertura viene aggiunto l'implicante identificato



Insieme di copertura: Ø

	9	13	21	25
P0	*			*
P1	*		*	
P0 P1 P2 P4		*		*
P4	*	*	*	

Insieme di copertura: { P3 }

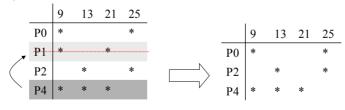
Calcolatori Elettronici

Metodo di Quine-Mc Cluskey: ricerca della copertura minima

Criterio di dominanza di riga:

Un implicante i-esimo domina un implicante j-esimo quando $P_{\rm i}$ copre almeno tutti i mintermini coperti da $P_{\rm i}$

P_iè eliminato dalla tabella (eliminazione della riga).



P4 domina P1

Insieme di copertura: { P3 } Insieme di copertura: { P3 }

- L'eliminazione di una riga può generare dei nuovi implicanti essenziali;
- Le righe ad essi associate vengono chiamate righe essenziali secondarie (implicanti primi secondari).

	9	13	21	25
P0	*			*
P2		*		*
P4	*	*	*	

Insieme di copertura: { P3 }

Insieme di copertura: { P3, P4 }

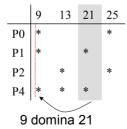
Calcolatori Elettronici

Metodo di Quine-Mc Cluskey: ricerca della copertura minima

Dominanza tra colonne:

Un mintermine i-esimo domina un mintermine j-esimo quando ogni implicante che copre $\mathbf{m_i}$ copre anche $\mathbf{m_i}$

m, è eliminato dalla tabella.



Insieme di copertura: { P3 }

Insieme di copertura: { P3 }

Quando tutte le righe essenziali e le colonne e righe dominate sono rimosse, la tabella ottenuta, se esiste, è ciclica: tabella ciclica degli implicanti primi.

Per scegliere gli implicanti si può effettuare una scelta arbitraria ed esaminare le conseguenze derivanti da tale scelta (branch and bound) e dalle sue alternative.

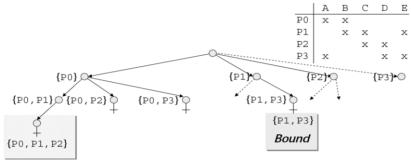
Calcolatori Elettronici

Branch and bound

- Si sceglie un implicante primo Pi come appartenente alla soluzione e si elimina la riga corrispondente e le colonne coperte da Pi dalla tabella di copertura
- 2. La tabella ridotta viene esaminata per altre possibili semplificazioni (righe essenziali o relazioni di dominanza) che possono portare direttamente ad una soluzione finale Si di costo Ci
- 3. Se la tabella ottenuta dalle semplificazioni, non è riducibile si sceglie un secondo implicante Pi tra quelli rimasti (considerando quindi come possibile copertura parziale la coppia {Pi,Pj}) iterando il procedimento di semplificazione e così via fino a coprire la funzione a costo Ci

Branch and bound

- Una volta individuata una soluzione si risale nell'albero, per esaminare le scelte rimaste
- 5. Si mantiene sempre la soluzione a costo minore (bound) e si confronta il costo ottenuto con il costo minore, quando lo si supera quella soluzione viene abbandonata



Calcolatori Elettronici

Metodo di Quine-Mc Cluskey: funzioni non completamente specificate

Ricerca degli implicanti primi:

Nel passo relativo alla generazione degli implicanti primi, le condizioni di indifferenza sono trattate come 1.

Ricerca della copertura ottima:

Nella tabella di copertura compaiono, come indici di colonna, solo i mintermini relativi agli 1 della funzione

Metodo di Quine-Mc Cluskey: funzioni non completamente specificate

 $f(a,b,c,d) = \Sigma(0,2,12,13) + d(4,5)$