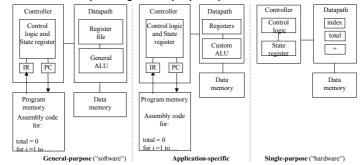
# Embedded Systems technologies

#### Riferimenti bibliografici

"Embedded System Design: A Unified Hardware/Software Introduction", Frank Vahid, Tony Givargis, John Wiley & Sons Inc., ISBN:0-471-38678-2, 2002.

"Computers as Components: Principles of Embedded Computer Systems Design", Wayne Wolf, Morgan Kaufmann Publishers, ISBN: 1-55860-541-X, 2001


Embedded System Design" by Peter Marwedel, Kluwer Academic Publishers, ISBN: 1-4020-7690-8, October 2003

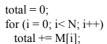
#### Three key embedded system technologies

- □ Technology
  - A manner of accomplishing a task, especially using technical processes, methods, or knowledge
- □ Three key technologies for embedded systems
  - Processor technology
  - IC technology
  - Design technology

## Processor technology

- □ The architecture of the computation engine used to implement a system's desired functionality
- □ Processor does not have to be programmable
  - "Processor" not equal to general-purpose processor




3

#### Processor technology

Processors vary in their customization for the problem at hand



Desired

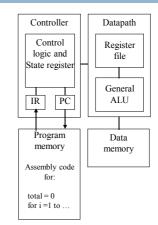


functionality



General-purpose processor

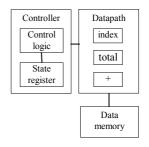



Application-specific processor

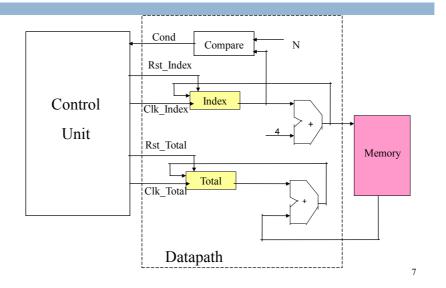


Single-purpose processor

#### General-purpose processors

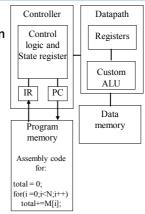

- Programmable device used in a variety of applications
  - Also known as "microprocessor"
- Features
  - Program memory
  - General datapath with large register file and general ALU
- User benefits
  - Low time-to-market and NRE costs
  - High flexibility
- Drawbacks
  - High unit cost
  - Low Performance




5

#### Single-purpose processors

- Digital circuit designed to execute exactly one program
  - a.k.a. coprocessor, accelerator or peripheral
- Features
  - Contains only the components needed to execute a single program
  - No program memory
- Benefits
  - Fast
  - Low power
- Drawbacks
  - No flexibility, high time-to-market, high NRE cost




#### Single-purpose processors



#### Application-specific processors

- Programmable processor optimized for a particular class of applications having common characteristics
  - Compromise between general-purpose and singlepurpose processors
- Features
  - Program memory
  - Optimized datapath
  - Special functional units
- Benefits
  - □ Some flexibility, good performance, size and power
- Drawbacks
  - High NRE cost (processor and compiler)
- · Examples: Microcontroller, DSP



#### A Common ASIP: Microcontroller

#### For embedded control applications

- Reading sensors, setting actuators
- Mostly dealing with events (bits): data is present, but not in huge amounts
- e.g., VCR, disk drive, digital camera (assuming SPP for image compression), washing machine, microwave oven

# RAM I/O Port A Serial Port I/O Port C

#### Microcontroller features

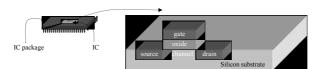
- On-chip peripherals
  - · Timers, analog-digital converters, serial communication, etc.
  - Tightly integrated for programmer, typically part of register space
- On-chip program and data memory
- Direct programmer access to many of the chip's pins
- Specialized instructions for bit-manipulation and other low-level

٥

#### Digital Signal Processors (DSP)

#### · For signal processing applications

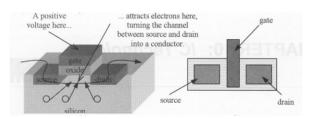
- Large amounts of digitized data, often streaming
- Data transformations must be applied fast
- e.g., cell-phone voice filter, digital TV, music synthesizer


#### · DSP features

- Several instruction execution units
- Multiple-accumulate single-cycle instruction, other instrs.
- Efficient vector operations e.g., add two arrays
  - · Vector ALUs, loop buffers, etc.

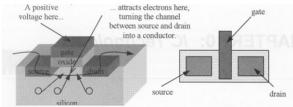
# Integrated Circuit Technology

#### Integrated circuit (IC) technology


- □ The manner in which a digital (gate-level) implementation is mapped onto an IC
  - □ IC: Integrated circuit, or "chip"
  - □ IC technologies differ in their customization to a design
  - □ IC's consist of numerous layers (perhaps 10 or more)
    - IC technologies differ with respect to who builds each layer and when



#### **CMOS** transistor

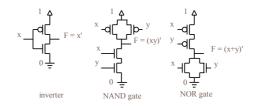

The basic electrical component in digital systems Acts as an on/off switch Voltage at "gate" controls whether current flows from source to drain Don't confuse this "gate" with a logic gate





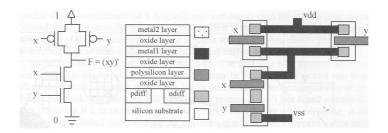
#### **CMOS** transistor

- □ Source, Drain
  - Diffusion area where electrons can flow
  - Can be connected to metal contacts (via's)
- Gate
  - Polysilicon area where control voltage is applied
- Oxide
  - $\hfill\Box$  Si  $\ensuremath{\text{O}}_2$  Insulator so the gate voltage can't leak




# CMOS transistor implementations

#### Complementary Metal Oxide Semiconductor


- We refer to logic levels
  - Typically 0 is 0V, 1 is Vdd
- Two basic CMOS types
  - nMOS conducts if gate=1
  - pMOS conducts if gate=0
  - Hence "complementary"
- Basic gates
  - Inverter, NAND, NOR





# IC technology

#### **NAND**

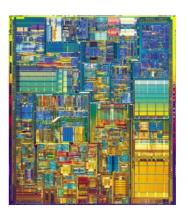


# IC Technologies

- □ Three types of IC technologies
  - □ Full-custom/VLSI
  - □ Semi-custom ASIC (gate array and standard cell)
  - □ PLD (Programmable Logic Device)

# Full-custom

- □ Very Large Scale Integration (VLSI)
- All layers are optimized for an embedded system's particular digital implementation
- Placement
  - Place and orient transistors
- Routing
  - Connect transistors
- Sizing
  - Make fat, fast wires or thin, slow wires
  - May also need to size buffer
- Benefits
  - Excellent performance, small size, low power


#### Full-custom/VLSI

#### Hand design

- Horrible time-tomarket/flexibility/NRE cost...
- Reserve for the most important units in a processor
  - ALU, Instruction fetch...

#### □ Physical design tools

Less optimal, but faster...



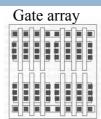
#### Drawbacks

□ High NRE cost (e.g., \$300k), long time-to-market

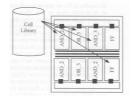
10

#### Semi-custom

- □ Lower layers are fully or partially built
  - Designers are left with routing of wires and maybe placing some blocks
- □ Benefits
  - □ Good performance, good size, less NRE cost than a full-custom implementation (perhaps \$10k to \$100k)
- Drawbacks
  - □ Still require weeks to months to develop


## Semi-custom

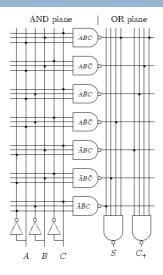
#### Gate Array


- Array of prefabricated gates
- "place" and route
- □ Higher density, faster time-to-market
- Does not integrate as well with full-custom

#### Standard Cell

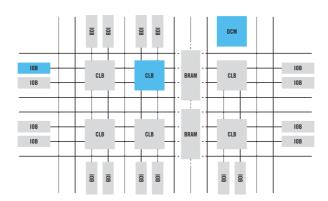
- A library of pre-designed cell
- Place and route
- Lower density, higher complexity
- Integrate great with full-custom




#### Standard Cell



# PLD (Programmable Logic Device)


- Programmable Logic Device
  - Programmable Logic Array, Programmable Array Logic, Field Programmable Gate Array
- All layers already exist
  - Designers can purchase an IC
  - To implement desired functionality
    - Connections on the IC are either created or destroyed to implement
- Benefits
  - Very low NRE costs
  - Great time to market
- Drawback
  - High unit cost, bad for large volume
  - Power
    - Except special PLA
  - slower

# Programmable Logic Array (PLA)



23

#### **FPGA**



# Configurable Logic Block (CLB)

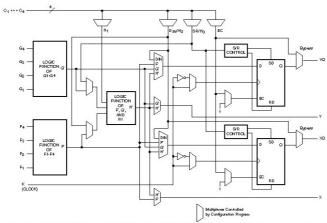
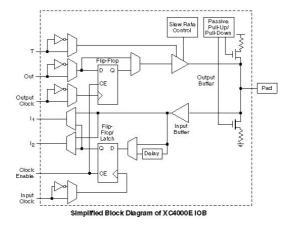
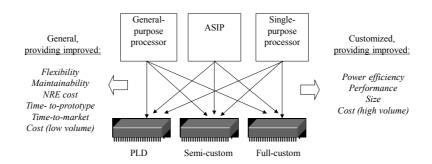





Figure 1: Simplified Block Diagram of XC4000-Series CLB (RAM and Carry Logic functions not shown)

# I/O block

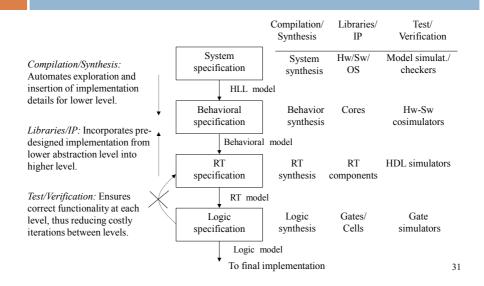


# Independence of processor and IC technologies

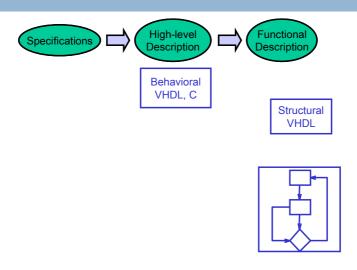


27

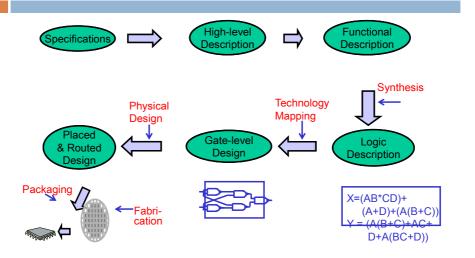
# Design Technology


# Design Technology

- A procedure for designing a system
- Many systems are complex and pose many design challenges: Large specifications, short time-to-market, high performance, multiple designers, interface to manufacturing.
- Proper design methodology helps to manage the design process and improves quality, performance and design costs

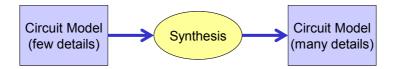

# Design flow

- A sequence of design steps in a design methodology
- · The design flow can be partially or fully automated
- A set or tools can be used to automate the methodology steps:
  - Software engineering tools,
  - Compilers,
  - Computer-Aided Design tools,
  - etc

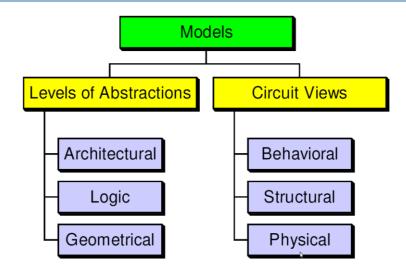

#### **Design Technology**



# IC Design Steps



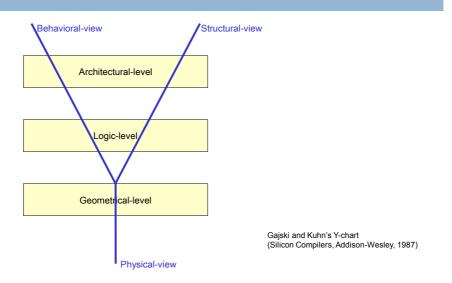

# IC Design Steps



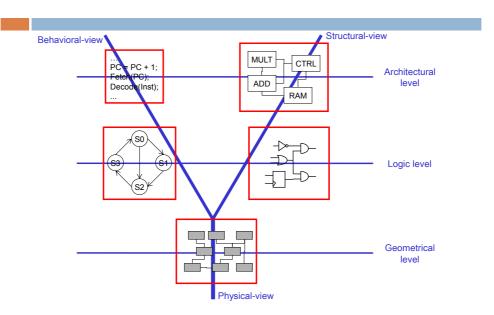

#### Circuit Models

- ■A model of a circuit is an abstraction
- → A representation that shows relevant features without associated details

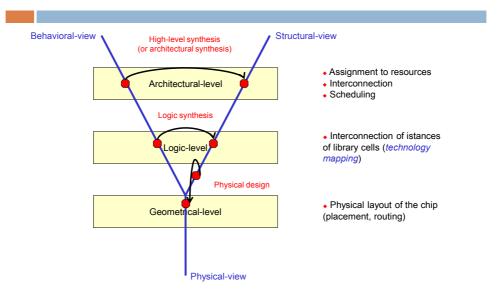



#### Model Classification



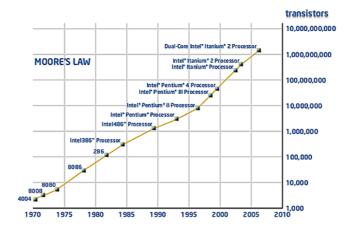

#### Views of a Model

- **■**Behavioral
- → Describe the function of a circuit *regardless* of its implementation
- Structural
- → Describe a model as an *interconnection* of components
- Physical
- → Relate to the *physical object* (e.g., transistors) of a design


# The Y-chart



## The Y-chart




# **Synthesis**



#### Moore's Law

■ Gordon Moore predicted in 1965 that the number of transistors that can be integrated on a die would double every 18 months.

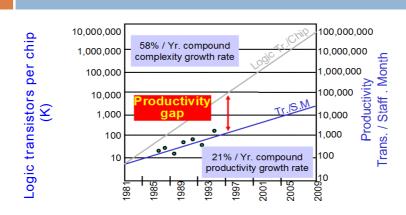


#### **Device Complexity**

- Exponential increase in device complexity
- → Increasing with Moore's law (or faster)!
- ■Require exponential increases in design productivity

We have exponentially more transistors!

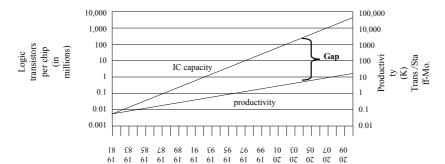
# Heterogeneity on Chip


- ■Greater diversity of on chip elements
- → Processors
- → Software
- → Memory
- →Analog

More transistors doing different things!

# Stronger Market Pressures

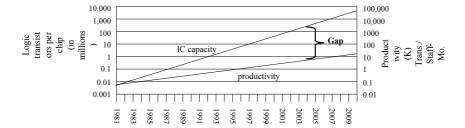
- ■Time-to-market
- → Decreasing design window
- →Less tolerance for design revisions


#### Design productivity gap



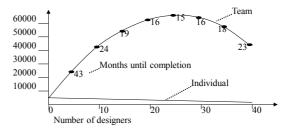
Role of EDA: close the productivity gap

#### Design productivity gap


 While designer productivity has grown at an impressive rate over the past decades, the rate of improvement has not kept pace with chip capacity



45


#### Design productivity gap

- □ 1981 leading edge chip required 100 designer months
  - □ 10,000 transistors / 100 transistors/month
- □ 2002 leading edge chip requires 30,000 designer months
  - 150,000,000 / 5000 transistors/month
- □ Designer cost increase from \$1M to \$300M



## The mythical man-month

- □ The situation is even worse than the productivity gap indicates
- In theory, adding designers to team reduces project completion time
- In reality, productivity per designer decreases due to complexities of team management and communication
- □ In the software community, known as "the mythical man-month" (Brooks 1975)
- At some point, can actually lengthen project completion time! ("Too many cooks")
- 1M transistors, 1 designer=5000 trans/month
- Each additional designer reduces for 100 trans/month
- So 2 designers produce 4900 trans/month each



#### Managing the design productivity crisis

- IP (Intellectual Property) Reuse
  - Assembly of predesigned Intellectual
  - Property components, often from external vendors
  - Soft and Hard IPs
- System-Level Design and verification
  - Rather than at the RTL or gate-level
  - Focus on Interface and Communication

#### **Evolution of Design Methodology**

#### ■We are now entering the era of block-based design

ASIC/ASSP Design



Yesterday Bus Standards, Predictable, Preverified



System-Board Integration

IP/Block Authoring

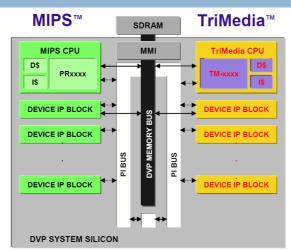


Today VSI Compatible Standards, Predictable, Preverified



System-Chip Integration

#### **Evolution of SoC Platforms**


General-purpose Scalable RISC

Processor

• 50 to 300+ MHz • 32-bit or 64-bit

Library of Device IP Blocks

- Image coprocessors
- DSPs
- ·UART
- · 1394
- · USB



Scalable VLIW Media Processor:

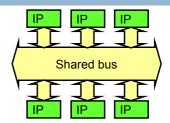
- 100 to 300+ MHz
- 32-bit or 64-bit

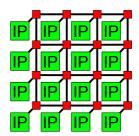
Nexperia™

System Buses • 32-128 bit

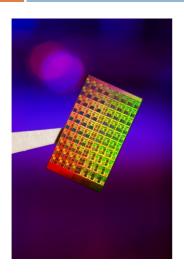
2 Cores: Philips' Nexperia PNX8850 SoC platform for High-end digital video (2001)

#### What's Happening in SoCs?


■Technology: no slow-down in sight!


Faster and smaller transistors:  $90 \rightarrow 65 \rightarrow 45 \rightarrow 32 \rightarrow 22$  nm

- → ... but slower wires, lower voltage, more noise!
- √80% or more of the delay of critical paths will be due to interconnects.
- Design complexity: from 2 to 10 to 100 cores!
- → Design reuse is essential
- → ...but differentiation/innovation is key for winning on the market!
- ■Performance and power:
- → Performance requirements keep going up
- ...but power budgets don't!


#### **Communication Architectures**

- ■Shared bus
- →Low area
- → Poor scalability
- → High energy consumption
- ■Network-on-Chip
- → Scalability and modularity
- →Low energy consumption
- → Increase of design complexity





# Intel's Teraflops



- ■100 Million transistors
- ■80 cores, 160 FP engines
- ■Teraflops perf. @ 62 Watts
- ■On-die mesh network
- ■Power aware design