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Embedded Systems 
technologies 
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Three key embedded system technologies 

 Technology 

 A manner of accomplishing a task, especially using 

technical processes, methods, or knowledge 

 Three key technologies for embedded systems 

 Processor technology 

 IC technology 

 Design technology 
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 The architecture of the computation engine used to implement a 
system’s desired functionality 

 Processor does not have to be programmable 

 “Processor” not equal to general-purpose processor 
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Processor technology 
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 Processors vary in their customization for the problem at hand 
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General-purpose processors 

• Programmable device used in a variety 
of applications 
 Also known as “microprocessor” 

• Features 
 Program memory 
 General datapath with large register file and 

general ALU 

• User benefits 
 Low time-to-market and NRE costs 
 High flexibility 

• Drawbacks 

 High unit cost 

 Low Performance 
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Single-purpose processors 

• Digital circuit designed to execute exactly 

one program 
 a.k.a. coprocessor, accelerator or peripheral 

• Features 
 Contains only the components needed to 

execute a single program 

 No program memory 

• Benefits 
 Fast 

 Low power 
Small size 

• Drawbacks 

 No flexibility, high time-to-market, high NRE cost 
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Application-specific processors 

• Programmable processor optimized for a 

particular class of applications having common 

characteristics 
 Compromise between general-purpose and single-

purpose processors 

• Features 
 Program memory 

 Optimized datapath 

 Special functional units 

• Benefits 
 Some flexibility, good performance, size and power 

• Drawbacks 

 High NRE cost (processor and compiler)‏ 

• Examples: Microcontroller, DSP 
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A Common ASIP: Microcontroller 

• For embedded control applications 
– Reading sensors, setting actuators 

– Mostly dealing with events (bits): data 
is present, but not in huge amounts 

– e.g., VCR, disk drive, digital camera 
(assuming SPP for image 
compression), washing machine, 
microwave oven 

•Microcontroller features 
– On-chip peripherals 

• Timers, analog-digital converters, serial communication, etc. 

• Tightly integrated for programmer, typically part of register 
space 

– On-chip program and data memory 

– Direct‏programmer‏access‏to‏many‏of‏the‏chip’s‏pins 

– Specialized instructions for bit-manipulation and other low-
level 
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Digital Signal Processors (DSP)‏ 

• For signal processing applications 

– Large amounts of digitized data, often streaming 

– Data transformations must be applied fast 

– e.g., cell-phone voice filter, digital TV, music synthesizer 

• DSP features 

– Several instruction execution units 

– Multiple-accumulate single-cycle instruction, other instrs. 

– Efficient vector operations – e.g., add two arrays 

• Vector ALUs, loop buffers, etc. 
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Integrated Circuit Technology 

12 

Integrated circuit (IC) technology 

source drain channel 

oxide 

gate 

Silicon substrate 

IC package IC  

 The manner in which a digital (gate-level) 

implementation is mapped onto an IC 

 IC: Integrated circuit, or “chip” 

 IC technologies differ in their customization to a design 

 IC’s consist of numerous layers (perhaps 10 or more) 

 IC technologies differ with respect to who builds each layer 

and when 
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The basic electrical component in digital systems 

Acts as an on/off switch 

Voltage at “gate” controls whether current flows 

from source to drain 

Don’t confuse this “gate” with a logic gate 

CMOS transistor 

gate 

source 

drain 

Conducts 
if gate=1 

CMOS transistor 

 Source, Drain 

 Diffusion area where electrons can flow 

 Can be connected to metal contacts (via’s) 

 Gate 

 Polysilicon area where control voltage is applied 

 Oxide 

 Si O2 Insulator so the gate voltage can’t leak 
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Complementary Metal 

Oxide Semiconductor 

• We refer to logic levels 

– Typically 0 is 0V, 1 is Vdd 

• Two basic CMOS types 

– nMOS conducts if gate=1 

– pMOS conducts if gate=0 

– Hence “complementary” 

• Basic gates 

– Inverter, NAND, NOR 

CMOS transistor implementations 
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IC technology 

NAND 
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IC Technologies 

 Three types of IC technologies 

 Full-custom/VLSI 

 Semi-custom ASIC (gate array and standard cell) 

 PLD (Programmable Logic Device) 

 

Full-custom 

 Very Large Scale Integration (VLSI) 

 All layers are optimized for an embedded system’s particular 
digital implementation 

 Placement 

 Place and orient transistors 

 Routing 

 Connect transistors 

 Sizing 

 Make fat, fast wires or thin, slow wires 

 May also need to size buffer 

 Benefits 

 Excellent performance, small size, low power 
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Full-custom/VLSI 

 

 

 

 

 

 

 

 

 Drawbacks 

 High NRE cost (e.g., $300k), long time-to-market 

 

 Hand design 

 Horrible time-to-
market/flexibility/NRE cost… 

 Reserve for the most important units 
in a processor 

 ALU, Instruction fetch… 

 Physical design tools 

 Less optimal, but faster… 
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Semi-custom 

 Lower layers are fully or partially built 

 Designers are left with routing of wires and maybe 

placing some blocks 

 Benefits 

 Good performance, good size, less NRE cost than a full-

custom implementation (perhaps $10k to $100k) 

 Drawbacks 

 Still require weeks to months to develop 
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Semi-custom 

 Gate Array 

 Array of prefabricated gates 

 “place” and route 

 Higher density, faster time-to-market 

 Does not integrate as well with full-custom 

 

 Standard Cell 

 A library of pre-designed cell 

 Place and route 

 Lower density, higher complexity 

 Integrate great with full-custom 

 

Gate array 

Standard Cell 
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PLD (Programmable Logic Device)‏ 

 Programmable Logic Device 

 Programmable Logic Array, Programmable Array Logic, Field Programmable Gate 
Array 

 All layers already exist 

 Designers can purchase an IC 

 To implement desired functionality 

 Connections on the IC are either created or destroyed to implement 

 Benefits 

 Very low NRE costs 

 Great time to market 

 Drawback 

 High unit cost, bad for large volume 

 Power 

 Except special PLA 

 slower 
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Programmable Logic Array (PLA)‏ 

24 

FPGA 
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Configurable Logic Block (CLB) 

I/O block 
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Design Technology 

• A procedure for designing a system 

• Many systems are complex and pose many design 

challenges: Large specifications, short time-to-market, high 

performance, multiple designers, interface to manufacturing. 

• Proper design methodology helps to manage the design 

process and improves quality, performance and design costs 

Design flow 

• A sequence of design steps in a design methodology 

• The design flow can be partially or fully automated 

• A set or tools can be used to automate the methodology 

steps: 

– Software engineering tools, 

– Compilers, 

– Computer-Aided Design tools, 

– etc 
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Design Technology 

Libraries/IP: Incorporates pre-

designed implementation from 

lower abstraction level into 

higher level. 

System 

specification 

Behavioral 

specification 

RT 

specification 

Logic 

specification 

To final implementation 

Compilation/Synthesis: 

Automates exploration and 

insertion of implementation 

details for lower level. 

Test/Verification: Ensures 

correct functionality at each 

level, thus reducing costly 

iterations between levels. 
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IC Design Steps 

Packaging 

Fabri- 
cation 

Physical 

Design 

Technology 

Mapping 

Synthesis 
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Design 

X=(AB*CD)+ 

     (A+D)+(A(B+C)) 

Y = (A(B+C)+AC+ 

       D+A(BC+D)) 

Gate-level 

Design 

Gate-level 

Design 
Logic 

Description 

Logic 
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Circuit Models 

A model of a circuit is an abstraction 

A representation that shows relevant features 
without associated details 

Circuit Model 

(few details) 

Circuit Model 

(few details) 

Circuit Model 

(many details) 

Circuit Model 

(many details) 
Synthesis Synthesis 
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Model Classification 

Views of a Model 

Behavioral 

Describe the function of a circuit regardless of its 
implementation 

Structural 

Describe a model as an interconnection of 
components 

Physical 

Relate to the physical object (e.g., transistors) of a 
design 
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The Y-chart 

Architectural-level 

Logic-level 

Geometrical-level 

Behavioral-view Structural-view 

Physical-view 

Gajski‏and‏Kuhn’s‏Y-chart 

(Silicon Compilers, Addison-Wesley, 1987) 
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Synthesis 

Architectural-level 

Logic-level 

Geometrical-level 

Behavioral-view Structural-view 

Physical-view 

High-level synthesis 

(or architectural synthesis) 

Logic synthesis 

Physical design 

 Assignment to resources 

 Interconnection 

 Scheduling 

 Interconnection of istances 

of library cells (technology 

mapping) 

 Physical layout of the chip 

(placement, routing) 
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Moore’s‏Law 

Gordon Moore predicted in 1965 that the number of transistors that can 
be integrated on a die would double every 18 months. 
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Device Complexity 

Exponential increase in device 

complexity 

Increasing with Moore's law (or faster)! 

Require exponential increases in design 

productivity 

We have exponentially more transistors! We have exponentially more transistors! 

Heterogeneity on Chip 

Greater diversity of on chip elements 

Processors 

Software 

Memory 

Analog 

 

More transistors doing different things! More transistors doing different things! 
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Stronger Market Pressures 

Time–to-market 

Decreasing design window 

Less tolerance for design revisions 
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Design productivity gap 

Role of EDA: close the productivity gap
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Design productivity gap 
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 While designer productivity has grown at an impressive rate 

over the past decades, the rate of improvement has not kept 

pace with chip capacity 
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Design productivity gap 
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 1981 leading edge chip required 100 designer months 

 10,000 transistors  /  100 transistors/month 

 2002 leading edge chip requires 30,000 designer months 

 150,000,000  /  5000 transistors/month 

 Designer cost increase from $1M to $300M 
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 The situation is even worse than the productivity gap indicates 

 In theory, adding designers to team reduces project completion time 

 In reality, productivity per designer decreases due to complexities of team management 

and communication  

 In the software community, known as “the mythical man-month” (Brooks 1975) 

 At some point, can actually lengthen project completion time! (“Too many cooks”) 

• 1M transistors, 1 

designer=5000 trans/month 

• Each additional designer 

reduces for 100 trans/month 

• So 2 designers produce 4900 

trans/month each 
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Managing the design productivity crisis 

•  IP (Intellectual Property) Reuse 

 Assembly of predesigned Intellectual 

 Property components, often from external vendors 

 Soft and Hard IPs  

• System-Level Design and verification  

 Rather than at the RTL or gate-level 

 Focus on Interface and Communication 
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Evolution of Design Methodology 

We are now entering the era of block-based 
design 

ASIC/ASSP 

Design 

System-Board 

Integration 

Yesterday 

Bus Standards, 

Predictable, Preverified 

Today 

VSI Compatible Standards, 

Predictable, Preverified 

IP/Block 

Authoring 

System-Chip 

Integration 

Evolution of SoC Platforms 

General-purpose 

Scalable RISC 

Processor 

 to 300+ MHz 50‏•

 bit or 64-bit-32‏•

 

Library of Device 

IP Blocks 

 Image‏•

coprocessors 

 DSPs‏•

 UART‏•

 1394‏•

 USB‏•

Scalable VLIW 

Media Processor: 

 to 300+ MHz 100‏•

 bit or 64-bit-32‏•

 

Nexperia™ 

System Buses 

 bit 32-128‏•

2 Cores: Philips’‏Nexperia‏PNX8850 SoC platform for High-end digital video (2001) 
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What’s Happening in SoCs? 

Technology: no slow-down in sight! 

Faster and smaller transistors: 90  65  45  32  22 nm 

…‏but‏slower‏wires,‏lower‏voltage,‏more‏noise! 
80% or more of the delay of critical paths will be due to interconnects 

Design complexity: from 2 to 10 to 100 cores! 
Design reuse is essential 

…but‏differentiation/innovation‏is‏key‏for‏winning‏on‏the‏
market! 

Performance and power: 
Performance requirements keep going up 

…but‏power‏budgets‏don’t! 

Communication Architectures 

Shared bus 

Low area 

Poor scalability 

High energy consumption 

 

Network-on-Chip 

Scalability and modularity 

Low energy consumption 

Increase of design complexity 

Shared bus 

IP IP IP 

IP IP IP 

IP IP IP IP 

IP IP IP IP 

IP IP IP IP 

IP IP IP IP 
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Intel’s Teraflops 

100 Million transistors 

80 cores, 160 FP engines 

Teraflops perf. @ 62 Watts 

On-die mesh network 

Power aware design 


