Topologies

Maurizio Palesi

Network Topology

\square Static arrangement of channels and nodes in an interconnection network

- The roads over which packets travel
\square Topology chosen based on cost and performance
\Rightarrow Cost and performance determided by many factors (flow control, routing, traffic)
\Rightarrow Measures to evaluate just the topology
\checkmark Bisection bandwidth
\checkmark Channel load
\checkmark Path delay

Factors Affecting Perfomance

\square Factors that influence the performance of a NoC are
\rightarrow Topology (static arrangement of channels and nodes)
\Rightarrow Routing Technique (selection of a path through the network)
\rightarrow Flow Control (how are network resources allocated, if packets traverse the network)
\rightarrow Router Architecture (buffers, switches, ...)
\rightarrow Traffic Pattern

Direct and Indirect Networks

- Direct Network
\Rightarrow Every Node in the network is both a terminal and a switch

■ Indirect Network

\rightarrow Nodes are either switches or terminal

Direct Networks

■ aka point-to-point network

- Consists of a set of nodes, each one being directly connected to a (usually small) subset of other nodes in the network
\rightarrow These nodes may have different functional capabilities

\checkmark E.g., vector processors, graphics processors, l/O processors, etc.

Direct Networks - Router

- A common component of the node is the router
\Rightarrow It handles message communication among nodes
\checkmark For this reason, direct networks are also known as router-based networks
\rightarrow Each router has direct
 connections to the router of its neighbors

Direct Networks - Links

- Two neighboring nodes are connected by a pair of unidirectional channels in opposite directions
- A bidirectional channel may also be used to connect two neighboring nodes

Direct Networks - Scalability

\square As the number of nodes in the system increases, the total communication bandwidth also increase
\Rightarrow Thus, direct networks have been a popular interconnection architecture for constructing large-scale parallel computers

Direct Networks - Topologies

Many network topologies have been proposed in terms of their graph-theoretical properties
\rightarrow Very few of them have ever been implemented
\rightarrow Most of the implemented networks have an orthogonal topology

DN - Orthogonal Topology

■ A network topology is orthogonal if and only if nodes can be arranged in an orthogonal n dimensional space, and every link can be arranged in such a way that it produces a displacement in a single dimension
■ Orthogonal Topologies
\rightarrow Strictly orthogonal topology
\checkmark Every node has at least one link crossing each dimension
\rightarrow Weakly orthogonal topology
\checkmark Some nodes may not have any link in some

DN - Strictly Orthogonal Topologies

\square Routing is very simple
\rightarrow Can be efficiently implemented in hardware
\square Most popular strictly orthogonal direct network topologies
$\Rightarrow n$-dimensional mesh
$\Rightarrow k$-ary n-cube (torus)
\Rightarrow Hypercube

n-Dimensional Mesh

\square It has $K_{0} \times K_{1} x \ldots \times K_{n-1}$ nodes, K_{i} nodes along each dimension i
\square Two nodes X and Y are neighbors if and only if $y_{\mathrm{i}}=x_{\mathrm{i}}$ for all $i, 0 \leq i \leq n-1$, except one,
j, where $y_{j}=x_{j} \pm 1$
Thus, nodes have from n to $2 n$ neighbors, depending on their location in the mesh
\checkmark Therefore, this topology is not regular

n-Dimensional Mesh

3-dimensional mesh

k-ary n-cube

\square All nodes have the same number of neighbors
It has K^{n} nodes
\square Two nodes X and Y are neighbors if and only if $y_{\mathrm{i}}=x_{\mathrm{i}}$ for all $\mathrm{i}, 0 \leq i \leq \mathrm{n}-1$, except one, j, where $y_{j}=\left(x_{j} \pm 1\right) \bmod K$
\rightarrow Modular arithmetic adds wraparound channels \checkmark Therefore, this topology is regular

k-ary n-cube

It is a special case of both n-dimensional meshes and k-ary n-cubes
\square A hypercube is an n-dimensional mesh in which $K_{\mathrm{i}}=2$ for $0 \leq i \leq \mathrm{n}-1$, or a 2-ary n cube
\rightarrow This topology is regular

Hypercube

2-ary 4-cube (hypercube)

Other Direct Network Topologies

- Aimed at minimizing the network diameter

■ Every node but the root has a single parent node
\Rightarrow Trees contain no cycles

- k-ary tree
\rightarrow A tree in which every node but the leaves has a fixed number k of descendants
- Balanced tree
\Rightarrow The distance from every leaf node to the root is the same

Drawbacks of Trees

\square Root node and the nodes close to it become a bottleneck
\rightarrow Allocating a higher channel bandwidth to channels located close to the root node
\checkmark Using channels with different bandwidths is not practical, especially when message transmission is pipelined
■ There are no alternative paths between any pair of nodes
\square For any connected graph, it is possible to define a tree that spans the complete graph
\Rightarrow Thus, For any connected network, it is possible to build an acyclic network connecting all the nodes by removing some links
This property can be used to define a routing algorithm for any irregular topology
\checkmark However, that routing algorithm may be inefficient due to the concentration of traffic across the root node

Indirect Networks

- The communication between any two nodes is carried through some switches
\square Each node has a network adapter that connects to a network switch
-The interconnection of those switches defines various network topologies

\square Allow any processor in the system to connect to any other processor (or memory unit) so that many processors can communicate simultaneously without contention
\square Used in
\Rightarrow The design of high-performance small-scale multiprocessors
\rightarrow The design of routers for direct networks
\rightarrow As basic components in the design of largescale indirect networks

Crossbar Networks (cnt'd)

- A crossbar can be defined as a switching network with N inputs and M outputs
\Rightarrow Which allows up to $\min \{N, M\}$ one-to-one interconnections without contention
\Rightarrow The cost of such a network is $O(N M)$, which is prohibitively high with large N and M

- Multistage Networks

\square MINs: Multistage Interconnection Networks
\Rightarrow Connect input devices to output devices through a number of switch stages
\checkmark Where each switch is a crossbar network
\Rightarrow The number of stages and the connection patterns between stages determine the routing capability of the networks
\square MINs are good for constructing parallel computers with hundreds of processors and have been used in some commercial machines

Generalized MIN Model

A generalized MIN with N inputs, M outputs, and g stages

Generalized MIN Model

\square All the switches will be identical
\rightarrow Thus amortizing the design cost

- Banyan networks are a class of MINs with the property that there is a unique path between any pair of source and destination
\Rightarrow An N-node $\left(N=K^{n}\right)$ Delta network is a subclass of Banyan networks, which is constructed from identical $K \times K$ switches in n stages, where each stage contains N / K switches
\checkmark Omega, flip, cube, butterfly, ...

A Closer View of Stage G

Connection Patterns

Perfect shuffle
Inverse perfect shuffle

16x16 MIN Example

MINs Classification

■ Blocking
 - Nonblocking

MINs - Blocking

\square A connection between a free input/output pair is not always possible
\Rightarrow Because of conflicts with the existing connections
■ Typically, there is a unique path between every input/output pair
\rightarrow Minimizing the number of switches and stages
\rightarrow It is also possible to provide multiple paths to reduce conflicts and increase fault tolerance
\checkmark Multipath networks

MINs - Nonblocking

\square Any input port can be connected to any free output port without affecting the existing connections
\Rightarrow The same functionality as a crossbar
\rightarrow Require multiple paths between every input and output
\checkmark Leads to extra stages

Topology \& Physical Constraints

- It is important to model the relationships between physical constraints and topology
\rightarrow And the resulting impact on performance
\square Network optimization is the process of utilizing these models
\rightarrow For selecting topologies that best match the physical constraints of the implementation
\square For a given implementation technology, physical constraints determine architectural features
\Rightarrow Channel widths
Impact on zero-load latency

Bisection Width/Bandwidth

■ One of the physical constraints facing the implementation of interconnection networks is the available wiring area
■ The available wiring area is determined by the packaging technology
\Rightarrow Whether the network resides on a chip, multichip module, or printed circuit board
■ VLSI systems are generally wire limited
\Rightarrow The silicon area required by these systems is determined by the interconnect area, and the performance is limited by the delay of these interconnections

- The choice of network dimension is influenced by how well the resulting topology makes use of the available wiring area
\Rightarrow One such performance measure is the bisection width

Cuts

- A cut of a network, $C\left(N_{1}, N_{2}\right)$, is a set of channels that partitions the set of all nodes into two disjoint sets, N_{1} and N_{2}
\Rightarrow Each element in $C\left(N_{1}, N_{2}\right)$ is a channel with a source in N_{1} and destination in N_{2} or vice versa

Bandwidth of the Cut

- Total bandwidth of the cut $C\left(N_{1}, N_{2}\right)$

$$
B\left(N_{1}, N_{2}\right)=\sum_{c \in C\left(N_{1}, N_{2}\right)} b_{c}
$$

Bisection

\square The bisection is a cut that partitions the entire network nearly in half
■ The channel bisection of a network, B_{C}, is the minimum channel count over all bisections

$$
B_{C}=\min _{\text {bisections }}\left|C\left(N_{1}, N_{2}\right)\right|
$$

- The bisection bandwidth of a network, B_{B}, is the minimum bandwidth over all bisections

$$
B_{B}=\min _{\text {bisections }}\left|B\left(N_{1}, N_{2}\right)\right|
$$

Bisection Examples

Diameter

- The diameter of a network, $H_{\text {max }}$, is the largest, minimal hop count over all pairs of terminal nodes

$$
H_{\max }=\max _{\mathrm{x}, \mathrm{y} \in N}|H(x, y)|
$$

For a fully connected network with N terminals built from switches with out degree $\delta_{0}, H_{\text {max }}$ is bounded by

$$
\begin{equation*}
H_{\max } \geq \log _{\delta_{o}} N \tag{1}
\end{equation*}
$$

Each terminal can reach at most δ_{0} other terminals after one hop At most $\delta_{0}{ }^{2}$ after two hops, and at most $\delta_{0}{ }^{H}$ after H hops If we set $\delta_{0}{ }^{H}=N$ and solve for H, we get (1)

Average Minimum Hop count

\square The average minimum hop count of a network, $H_{\text {min }}$, is defined as the average hop count over all sources and destinations

$$
H_{\min }=\frac{1}{N^{2}} \sum_{x, y \in N} H(x, y)
$$

Physical Distance and Delay

■The physical distance of a path is

$$
D(P)=\sum_{c \in P} l_{c}
$$

■ The delay of a path is

$$
t(P)=D(P) / v
$$

Performance

- Throughput
\Rightarrow Data rate in bits/s that the network accepts per input port
\Rightarrow It is a property of the entire network
\rightarrow It depends on
\checkmark Routing
\checkmark Flow control
\checkmark Topology

deal Throughput

■ /deal throughput of a topology
\rightarrow Throughput that the network could carry with perfect flow control (no contention) and routing (load balanced over alternative paths)
■ Maximum throughput
\Rightarrow It occurs when some channel in the network becomes saturated

Channel Load

\square We define the load of a channel c, γ_{c}, as

$\gamma_{c}=\frac{\text { bandwidth demanded from channel } c}{\text { bandwidth of the input ports }}$

- Equivalently
\Rightarrow Amount of traffic that must cross c if each input injects one unit of traffic
■ Of course, it depends on the traffic pattern considered
\rightarrow We will assume uniform traffic

Maximum Channel Load

Under a particular traffic pattern, the channel that carries the largest fraction of traffic determines the maximum channel load $\gamma_{\text {max }}$ of the topology

$$
\gamma_{\max }=\max _{c \in C} \gamma_{c}
$$

Ideal Throughput

■ When the offered traffic reaches the throughput of the network, the load on the bottleneck channel will be equal to the channel bandwidth b
\Rightarrow Any additional traffic would overload this channel

- The ideal throughput $\Theta_{\text {ideal }}$ is the input bandwidth that saturates the bottleneck channel

$$
\begin{aligned}
& \gamma_{c}=\frac{\text { bandwidth demanded from channel } c}{\text { bandwidth of the input ports }} \\
& \gamma_{c}=\gamma_{\max }=\frac{b}{\Theta_{\text {ideal }}} \\
& \Theta_{\text {ideal }}=\frac{b}{\gamma_{\max }}
\end{aligned}
$$

Bounds for $\gamma_{\max }$

$\square \gamma_{\max }$ is very hard to compute for the general case (arbitrary topology and arbitrary traffic pattern)
■ For uniform traffic some upper and lower bounds can be computed with much less effort

Lower Bound on γ

- The load on the bisection channels gives a lower bound on ${ }_{\text {max }}$
- Let us assume uniform traffic
\Rightarrow On average, half of the traffic ($N / 2$ packets) must cross the B_{C} bisection channels
\Rightarrow The best throughput occurs when these packets are distributed evenly across the bisection channels
\Rightarrow Thus, the load on each bisection channel ${ }_{B}$ is at least

$$
\gamma_{\max } \geq \gamma_{B}=\frac{N}{2 \mathrm{~B}_{C}}
$$

Upper Bound on $\Theta_{\text {ideal }}$

- We found that

$$
\Theta_{\text {ideal }}=\frac{b}{\gamma_{\max }} \quad \text { and } \quad \gamma_{\max } \geq \gamma_{B}=\frac{N}{2 \mathrm{~B}_{C}}
$$

■ Combining the above equations we have

$$
\Theta_{\text {ideal }} \leq \frac{2 b B_{C}}{N}=\frac{2 \mathrm{~B}_{B}}{N}
$$

Another Lower Bound on $\gamma_{\text {max }}$

- The average number of channel traversals required to deliver a packet for a given traffic is $H_{\text {min }} N$
\square Let us assume the best case in which all channels are loaded equally
\Rightarrow The load on every channel in the network is

$$
\gamma_{c, L B}=\gamma_{\max , L B}=\frac{H_{\min } N}{|C|}
$$

Simple Upper Bound on $\gamma_{\text {max }}$

- Let us suppose a routing function that balances load across all minimal paths equally
\Rightarrow E.g., If there are $\left|R_{x y}\right|$ paths from x to $y, 1 /\left|R_{x y}\right|$ is credited to each channel of each path
\Rightarrow The maximum load over a channel c is

$$
\gamma_{c, U B}=\frac{1}{N} \sum_{x \in N} \sum_{y \in N} \sum_{P \in x y}\left\{\begin{array}{cl}
1 /\left|R_{x y}\right| & \text { if } c \in P \\
0 & \text { otherwise }
\end{array}\right.
$$

So, the maximum load $\gamma_{\text {max, UB }}$ is the largest $\gamma_{\mathrm{c}, \mathrm{UP}}$ over all channels

$$
\gamma_{\max , U B}=\max _{c \in C} \gamma_{c, U B}
$$

Example (1/3)

- Let us consider a eight-node ring network

Example (2/3)

■ Let us focus on channel $(3,4)$

$$
\gamma_{(3,4), U B}=\frac{1}{N} \sum_{x \in N} \sum_{y \in N} \sum_{P \in \in y}\left\{\begin{array}{cl}
1 \|\left|R_{x y}\right| & \text { if } c \in P \\
0 & \begin{array}{l}
\text { otherwise }
\end{array}
\end{array}\right.
$$

Example (3/3)

■ It is simple to observe that the load on all channels is the same

$$
\Rightarrow \gamma_{\text {max }, \mathrm{UB}}=\gamma_{\mathrm{c}, \mathrm{UB}}=1
$$

■ Now, let us compute the lower bound

$$
\gamma_{c, L B}=\gamma_{\max , L B}=\frac{H_{\min } N}{|C|}
$$

$\rightarrow H_{\text {min }}=2$ hops $\rightarrow \gamma_{\text {max, } L \text { B }}=2_{2}^{3} 8 / 16=1$
$\square \gamma_{\text {max }, \text { LB }} \frac{\mathrm{C}}{\lambda} \gamma_{\text {max }} \frac{\mathrm{C}}{\lambda} \gamma_{\text {max }, \mathrm{UB}}$
$\Rightarrow \gamma_{\text {max }}=1$

atency

-The latency of a network is the time required for a packet to traverse the network
\Rightarrow From the time the head of the packet arrives at the input port to the time the tail of the packet departs the output port

Components of the Latency

\square We separate latency, T, into two components
\rightarrow Head latency $\left(T_{h}\right)$: time required for the head to traverse the network
\Rightarrow Serialization latency (T_{s}): time for a packet of length L to cross a channel with bandwidth b

$$
T=T_{h}+T_{s}=T_{h}+\frac{L}{b}
$$

Contributions

■ Like throughput, latency depends on
\Rightarrow Routing
\rightarrow Flow control
\rightarrow Design of the router
\Rightarrow Topology

Latency at Zero Load

\square We consider latency at zero load, T_{0}
\Rightarrow Latency when no contention occurs
$\square T_{\mathrm{h}}$: sum of two factors determined by the topology
\Rightarrow Router delay (T_{r}): time spent in the routers
\rightarrow Time of flight (T_{w}): time spent on the wires

$$
\begin{gathered}
T_{h}=T_{r}+T_{w}=H_{\min } t_{r}+\frac{D_{\min }}{v} \\
T_{0}=H_{\min } t_{r}+\frac{D_{\min }}{v}+\frac{L}{b}
\end{gathered}
$$

Latency at Zero Load

Technology

Topology

Node degree
Router design

Packet Propagation

$\xrightarrow{\text { time }}$

Case Study

- A good topology exploits characteristics of the available packaging technology to meet bandwidth and latency requirements of the application
■ To maximize bandwidth a topology should saturate the bisection bandwidth

Bandwidth Analysis (Torus)

Assume: 256 signals @ 1Gbits/s

Bisection bandwidth 256 Gbits/s

Bandwidth Analysis (Torus)

$\square 16$ unidirectional channels cross the midpoint of the topology

- To saturate the bisection of 256 signals
\rightarrow Each channel crossing the bisection should be 256/16 = 16 signals wide
Constraints
- Each node packaged on a IC
\checkmark Limited number of I/O pins (e.g., 128)
$\checkmark 8$ channels per node $\rightarrow 8 \times 16=128$ pins \rightarrow OK

Bandwidth Analysis (Ring)

- 4 unidirectional channels cross the mid-point of the topology

■ To saturate the bisection of 256 signals
\Rightarrow Each channel crossing the bisection should be 256/4 = 64 signals wide

- Constraints
\Rightarrow Each node packaged on a IC
\checkmark Limited number of I/O pins (e.g., 128)
$\checkmark 4$ channels per node $\rightarrow 4 \times 64=256$ pins \rightarrow INVALID
\rightarrow With identical technology constraints, the ring provides only half the bandwidth of the torus

Delay Analysis

■ The application requires only 16Gbits/s
> ...but also minimum latency
■ The application uses long 4,096-bit packets
■ Suppose random traffic
\rightarrow Average hop count
\checkmark Torus $=2$
\checkmark Ring $=4$

- Channel size
\Rightarrow Torus $=16$ bits
\Rightarrow Ring $=32$ bits

Delay Analysis

- Serialization latency (channel speed 1GHz)
\Rightarrow Torus $=4,096 / 16$ * $1 \mathrm{~ns}=256 \mathrm{~ns}$
\Rightarrow Ring $=4,096 / 32 * 1 \mathrm{~ns}=128 \mathrm{~ns}$
\square Latency assuming 20ns hop delay
\Rightarrow Torus $=256+20 * 2=296$ ns
\Rightarrow Ring $=128+20 * 4=208 \mathrm{~ns}$
\square No one topology is optimal for all applications Different topologies are appropriate for different constraints and requirements

