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Data-Level Parallelism in Vector 

and  SIMD Architectures 

Flynn Taxonomy of Computer 

Architectures (1972) 

It is  based on parallelism of instruction streams and data streams 

 SISD  

 single instruction stream, single data stream • microprocessors 

 SIMD 

 single instruction stream, multiple data streams 

 vector processors; principle behind multimedia extensions 

  graphic processing units (GPUs) 

 MISD 

 multiple instruction streams, single data stream 

 not commercial processors (yet) 

 MIMD 

 multiple instruction streams, multiple data streams 

 each processor fetches its own instruction and operates on its own data 
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SISD architecture 

 Le SISD architectures  sono quelle classiche nelle 

quali non è previsto nessun grado di parallelismo né 

tra le istruzioni né tra i dati. 

MISD architecture 

 MISD è una architettura abbastanza inusuale nella 

quale più istruzioni concorrenti operano sullo stesso 

flusso di dati. 

 Un campo di applicazione possono ad esempio 

essere i sistemi ridondanti, come i sistemi di controllo 

degli aeroplani nei quali se uno dei processori si 

guasta l'elaborazione dei dati deve continuare 

ugualmente. 
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SIMD architecture 

 This form of parallel processing has existed since the 1960s 

 The idea is rather than executing array operations by loop, 
we execute all of the array operations in parallel on 
different processing elements (ALUs) 

 we convert for(i=0;i<n;i++) a[i]++; into a single operation, say 
A=A+1 

 Not only do we get a speedup from the parallelism, we also 
get to remove the looping operation (incrementing i, the 
comparison and conditional branch) 

 These technologies are often applied  in the field of audio / 
video codecs and video games. 

 For example, if  a polygon is moved, it is necessary to translate all its 
vertices by adding to each of  them the same value. 

MIMD 

 Solitamente nella categoria MIMD si fanno rientrare 

i sistemi distribuiti, nei quali più processori autonomi 

operano in parallelo su dati differenti. 
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SIMD vs MIMD 

 SIMD architectures can exploit significant data-level 
parallelism for: 
 matrix-oriented scientific computing 

 media-oriented image and sound processors 

 

 SIMD is more energy efficient than MIMD 
 Only needs to fetch one instruction per data operation 

 Makes SIMD attractive for personal mobile devices 

 

 SIMD allows programmer to continue to think 
sequentially 

SIMD parallelism 

 Vector architectures 

 Multimedia SIMD instruction set extensions 

 Graphics Processor Units (GPUs) 
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Potential speedup via parallelism over time for 

x86 computers.  

 For x86 processors: 

 Expect two additional 
cores per chip per year 

 SIMD width to double 
every four years 

 Potential speedup from 
SIMD to be twice that 
from MIMD! 

 

Vector Architectures 

 Basic idea: 

 Read sets of data elements into “vector registers” 

 Operate on those registers 

 Disperse the results back into memory 

 

 Registers are controlled by compiler 

 Used to hide memory latency 

 Leverage memory bandwidth 
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Vector Architectures 

 provide high-level operations that work on vectors (linear arrays of 
numbers) 

 e.g. add two 64-element vectors in 1 step, instead of using a loop 

 reduce IF, ID bandwidth 

 instruction represent many operations 

 reduce HW complexity to support ILP 

 the computation on each element does not depend on the others 

 check hazards once for vector operand 

 since a loop is replaced by an instruction, loop branch, control hazards 
disappear 

 improve memory access 

 deeply-pipelined vector load/store unit a single access is initiated for the 
entire vector (bandwidth of one word per clock cycle after initial latency) 

VMIPS 

 Example architecture:  VMIPS 
 Loosely based on Cray-1 
 Vector registers 

 Each register holds a 64-element, 64 bits/element vector 
 Register file has 16 read ports and 8 write ports 

 Vector functional units 
 Fully pipelined 
 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 
 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 
 32 floating-point registers 
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Structure of VMIPS Vector Processor 

The VMIPS processor has a scalar 

architecture just like MIPS. 

There are also eight 64-element  

vector registers, and all the 

functional units are vector 

functional units.  

The figure shows vector units for logical 

and integer operations so that 

VMIPS looks like a classic vector processor  

(Cray 1). The vector and scalar registers  

have a significant number of read  

and write ports to allow multiple  

simultaneous vector operations. 

Crossbar switches (thick gray 

lines) connects these ports to 

the inputs and outputs of the 

vector functional units. 

VMIPS Instruction Set 

 Aside from the ordinary MIPS instructions (scalar 

operations), we enhance MIPS with the following: 

 LV, SV – load vector, store vector 

 LV V1, R1 – load vector register V1 with the data starting at the 

memory location stored in R1 

 also LVI/SVI for using indexed addressing mode, and LVWS and 

SVWS for using scaled addressing mode 

 ADDVV.D V1, V2, V3 (V1  V2 + V3) 

 ADDVS.D V1, V2, F0 (scalar addition) 

 similarly for SUB, MUL and DIV 
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VMIPS Instruction Set 

 S--VV.D V1, V2 and S--VS.D V1, F0 to compare 

pairwise elements in V1 and V2 or V1 and F0 

 -- is one of EQ, NE, GT, LT, GE, LE 

 result of comparison is a set of boolean values placed into 

the bit vector register VM which we can then use to 

implement if statements 

 POP R1, VM – count number of 1s in the VM and store 

in R1 

 this is only a partial list of instructions, and only the FP 

operations, see figure 4.3 for more detail, missing are any 

integer based operations 

VMPIS instruction Set 
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VMPIS instruction Set 

Example 

 Let’s look at a typical vector processing problem, computing Y = a*X + Y  

 Where X & Y are vectors and a is a scalar (e.g., y[i]=y[i]+a*x[i]) 

 The MIPS code is on the left and the VMIPS code is on the right 

 L.D F0, a 

 DADDI R4, Rx, #512 

Loop: L.D F2, 0(Rx) 

 MUL.D F2, F2, F0 

 L.D F4, 0(Ry) 

 ADD.D F4, F4, F2 

 S.D F4, 0(Ry) 

 DADDI Rx, Rx, #8 

 DADDI Ry, Ry, #8 

 DSUB R20, R4, Rx 

 BNEZ R20, Loop 

L.D  F0, a 

LV  V1, Rx 

MULVS.D V2, V1, F0 

LV  V3, Ry 

ADDVV.D V4, V2, V3 

SV  V4, Ry 

In MIPS, we execute 578 instructions 

whereas in VMIPS, only 6 (there are 64 

elements in the array to process, each is 8 

bytes long) and there are no RAW hazards or 

control hazards to deal with 
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VMIPS Instructions 

 ADDVV.D:  add two vectors 

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 

 

 Example:  DAXPY 

L.D   F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D  V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV  V4,V2,V3 ; add 

SV   Ry,V4  ; store the result 

 Requires 6 instructions vs. 578 for MIPS 

Vector Execution Time 

 Execution time depends on three factors: 

 Length of operand vectors 

 Structural hazards 

 Data dependencies 

 

 VMIPS functional units consume one element per 
clock cycle 

 Execution time is approximately the vector length 
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Convoy 

 A convoy is a set of sequential vector operations 

that can be issued together without a structural 

hazard 

 Because we are operating on vectors in a pipeline, the 

execution of these operations can be overlapped 

 e.g., L.V V1, Rx followed by ADDVV.D V3, V1, V2 would 

allow us to retrieve the first element of V1 and then start the 

addition while retrieving the second element of V1 

Chimes 

 A chime is the amount of time it takes to execute a 

convoy 

 We will assume that there are no stalls in executing the 

convoy, so the chime will take n + x – 1 cycles where x is the 

length of the convoy and n is the number of data in the 

vector 

 A program of m convoys will take m chimes, or m * (n + x – 

1) cycles (again, assuming no stalls) 

 The chime time ignores pipeline overhead, and so architects 

prefer to dicuss performance in chimes 
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Example 

LV   V1,Rx   ;load vector X 

MULVS.D  V2,V1,F0   ;vector-scalar multiply 

LV   V3,Ry   ;load vector Y 

ADDVV.D  V4,V2,V3  ;add two vectors 

SV   Ry,V4   ;store the sum 

 

Convoys: 

1  LV  MULVS.D 

2  LV  ADDVV.D 

3  SV 

 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 

Vector Chaining 

 Vector version of register bypassing 

 Without chaining, must wait for last element of result 

to be written before starting dependent instruction 

 With chaining, can start dependent instruction as soon 

as first result appears 
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Challenges 

 Start up time 

 Latency of vector functional unit 

 Assume the same as Cray-1 

 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 

Challenges 

 Improvements: 

 > 1 element per clock cycle 

 Non-64 wide vectors 

 IF statements in vector code 

 Memory system optimizations to support vector processors 

 Multiple dimensional matrices 

 Sparse matrices 

 Programming a vector computer 
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Multiple Lanes 

 Element n of vector register A is “hardwired” to element n of 

vector register B 

 Allows for multiple hardware lanes 

Multiple Lanes 

 Each line contains a portion of vector register file and one execution 

pipeline from each vector functional unit 
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Vector Length Register 

 Vector length not known at compile time? 

for ( i =0; i<n; i++) 

 Y[i]=Y[i]+a*X[i]; 

   n is know at run time 

 Use Vector Length Register (VLR) 

 VLR cannot be greater than the size of the vector registers, the 

maximum vector lenght (MVL) 

 MVL determines the number of data in a vector 

 

Vector Length Register 

 Use strip mining for vectors over the maximum length: 

low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 
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Vector Mask Registers 

 Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

  X[i] = X[i] – Y[i]; 

 

 This loop cannot be normally vectorized 

 Iteration can be vectorized for items for which X[i] != 0 

 Use vector mask register (VM) to “disable” elements: 

 SNEVS.D V1,F0 

 This instruction sets VM(i) to 1 if V1(i)!=F0 

 

 When VM register is enabled, vector instructions operate only on the 
elements with VM(i) equal to one 

 Clearing VM, vector instructions operate on all elements 

Vector Mask Registers 

 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 

 

GFLOPS rate decreases! 
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Memory Banks 

 Memory system must be designed to support high bandwidth 

for vector loads and stores 

 Spread accesses across multiple banks 

 Control bank addresses independently 

 Load or store non sequential words 

 Support multiple vector processors sharing the same memory 

 

 Example: 

 32 processors, each generating 4 loads and 2 stores/cycle 

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 

 How many memory banks needed? 

Stride 

 Consider: 

   for (j = 0; , < 64; j=j+1)  

  A[i][j] = B[k][j] * D[j][m]; 

  } 

 

 

LV  V1, RB  ; RB contains address of row B[k] 

LVWS    V2, (RD,R2) ; RD contains address of D[0][m] and R2 contains row size 

MULTW  V3,V1,V2 

SW RA, V3  ; RA contains address of row B[k] 

 

 Must vectorize multiplication of rows of B with columns of D 

 Use non-unit stride 

 Bank conflict (stall) occurs when the same bank is hit faster than bank busy time: 

 #banks / LCM(stride,#banks) < bank busy time 

column[m] 

row[i] 
row[k] 
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Scatter-Gather 

 Consider: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]]; 

 

 Use index vector: 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 

Programming Vec. Architectures 

 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 
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SIMD Extensions 

 Media applications operate on data types narrower than the 

native word size 

 Example:  disconnect carry chains to “partition” adder 

 

 Limitations, compared to vector instructions: 

 Number of data operands encoded into op code 

 No sophisticated addressing modes (strided, scatter-

gather) 

 No mask registers 

Esempi di estensioni di tipo SIMD 

 Le più diffuse sono: 

 Apple/IBM/Freescale AltiVec 

 Intel MMX/SSE/SSE2/SSE3/SSSE3 

 AMD 3DNow! 

 SPARC VIS 

 ARM Neon/VFP 

 MIPS MDMX/MIPS-3D 
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SIMD Implementations 

 Implementations: 

 Intel MMX (1996) 

 Eight 8-bit integer ops or four 16-bit integer ops 

 Streaming SIMD Extensions (SSE) (1999) 

 Eight 16-bit integer ops 

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

 Advanced Vector Extensions (2010) 

 Four 64-bit integer/fp ops 

 

 Operands must be consecutive and aligned memory 
locations 

 


