
12/4/2013

1

1

Intel SIMD extensions

2

Performance boost

 Architecture improvements (such as

pipeline/cache/SIMD) are more significant

 Intel analyzed multimedia applications and found

they share the following characteristics:

 Small native data types (8-bit pixel, 16-bit audio)

 Recurring operations

 Inherent parallelism

12/4/2013

2

SIMD

• SIMD (single instruction multiple data)

architecture performs the same operation on

multiple data elements in parallel

• PADDW MM0, MM1

SISD/SIMD

12/4/2013

3

Intel SIMD development

 MMX (Multimedia Extension) was introduced in

1996 (Pentium with MMX and Pentium II).

 SSE (Streaming SIMD Extension) was introduced with

Pentium III.

 SSE2 was introduced with Pentium 4.

 SSE3 was introduced with Pentium 4 supporting

hyper-threading technology. SSE3 adds 13 more

instructions.

 Advanced Vector Extensions (2010)

MMX

 After analyzing a lot of existing applications such
as graphics, MPEG, music, speech recognition, game,
image processing, they found that many multimedia
algorithms execute the same instructions on many
pieces of data in a large data set.

 Typical elements are small, 8 bits for pixels, 16 bits
for audio, 32 bits for graphics and general
computing.

 New data type: 64-bit packed data type.

12/4/2013

4

MMX data types

Each of the MMn registers is a 64-bit integer. However, one of the main concepts of the

MMX instruction set is the concept of packed data types, which means instead of using

the whole register for a single 64-bit integer (quadword), two 32-bit integers

(doubleword), four 16-bit integers (word) or eight 8-bit integers (byte) may be used.

MMX integration into IA

79

11…11

8 MM0~MM7

• To simplify the design and to avoid

modifying the operating system to

preserve additional state through

context switches, MMX re-uses the

existing eight IA-32 FPU registers.

• This made it difficult to work with

floating point and SIMD data at the

same time.

• To maximize performance,

programmers must use the processor

exclusively in one mode or the other

12/4/2013

5

MMX instructions

 57 MMX instructions are defined to perform the

parallel operations on multiple data elements packed

into 64-bit data types.

 These include add, subtract, multiply,

compare, and shift, data conversion, 64-

bit data move, 64-bit logical

operation and multiply-add for multiply-

accumulate operations.

 All instructions except for data move use MMX registers

as operands.

 Most complete support for 16-bit operations.

Saturation arithmetic

wrap-around saturating

• Useful in graphics applications.

• When an operation overflows or underflows,

the result becomes the largest or smallest

possible representable number.

• Two types: signed and unsigned saturation

12/4/2013

6

11

MMX instructions

12

MMX instructions

Call it before you switch to FPU from MMX;

Expensive operation

12/4/2013

7

13

Arithmetic

 PADDB/PADDW/PADDD: add two packed

numbers

 Multiplication: two steps

 PMULLW: multiplies four words and stores the four

lo words of the four double word results

 PMULHW/PMULHUW: multiplies four words and

stores the four hi words of the four double word

results. PMULHUW for unsigned.

14

Arithmetic

 PMADDWD mmi, mmj

12/4/2013

8

15

Example: add a constant to a

vector

char d[]={5, 5, 5, 5, 5, 5, 5, 5};

char clr[]={65,66,68,...,87,88}; // 24 bytes

__asm{

 movq mm1, d

 mov cx, 3

 mov esi, 0

L1: movq mm0, clr[esi]

 paddb mm0, mm1

 movq clr[esi], mm0

 add esi, 8

 loop L1

 emms

}

16

Comparison

• No CFLAGS, how many flags will you need? Results are

stored in destination.

• EQ/GT, no LT

12/4/2013

9

17

Change data types

 Pack: converts a larger data type to the next

smaller data type.

 Unpack: takes two operands and interleave them. It

can be used for expand data type for immediate

calculation.

Pack with signed saturation

PACKSSDW mmd, mms

12/4/2013

10

Pack with signed saturation

PACKSSWB mmd, mms

20

Unpack low portion

12/4/2013

11

21

Unpack low portion

22

Unpack low portion

12/4/2013

12

23

Unpack high portion

Keys to SIMD programming

 Efficient data layout

 Elimination of branches

12/4/2013

13

Application: frame difference

A B

|A-B|

26

Application: frame difference

A-B B-A

(A-B) or (B-A)

12/4/2013

14

27

Application: frame difference

MOVQ mm1, A //move 8 pixels of image A

MOVQ mm2, B //move 8 pixels of image B

MOVQ mm3, mm1 // mm3=A

PSUBSB mm1, mm2 // mm1=A-B

PSUBSB mm2, mm3 // mm2=B-A

POR mm1, mm2 // mm1=|A-B|

Example: image fade-in-fade-out

A*α+B*(1-α) = B+α(A-B)

A

B

12/4/2013

15

29

α=0.75

30

α=0.5

12/4/2013

16

31

α=0.25

Example: image fade-in-fade-out

 Two formats: planar and chunky

 In Chunky format, 16 bits of 64 bits are wasted

 So, we use planar in the following example

R G B A R G B A

12/4/2013

17

33

Example: image fade-in-fade-out

Image A Image B

Example: image fade-in-fade-out

MOVQ mm0, alpha//4 16-b zero-padding α

MOVD mm1, A //move 4 pixels of image A

MOVD mm2, B //move 4 pixels of image B

PXOR mm3, mm3 //clear mm3 to all zeroes

//unpack 4 pixels to 4 words

PUNPCKLBW mm1, mm3 // Because B-A could be

PUNPCKLBW mm2, mm3 // negative, need 16 bits

PSUBW mm1, mm2 //(B-A)

PMULHW mm1, mm0 //(B-A)*fade/256

PADDW mm1, mm2 //(B-A)*fade + B

//pack four words back to four bytes

PACKUSWB mm1, mm3

12/4/2013

18

35

Data-independent computation

 Each operation can execute without needing to know the results of a

previous operation.

 Example, sprite overlay

for i=1 to sprite_Size

 if sprite[i]=clr

 then out_color[i]=bg[i]

 else out_color[i]=sprite[i]

 How to execute data-dependent calculations on several pixels in

parallel.

36

Application: sprite overlay

12/4/2013

19

37

Application: sprite overlay

MOVQ mm0, sprite

MOVQ mm2, mm0

MOVQ mm4, bg

MOVQ mm1, clr

PCMPEQW mm0, mm1

PAND mm4, mm0

PANDN mm0, mm2

POR mm0, mm4

38

Performance boost (data from

1996)

Benchmark kernels: FFT, FIR,

vector dot-product, IDCT,

motion compensation.

65% performance gain

Lower the cost of multimedia

programs by removing the

need of specialized DSP

chips

12/4/2013

20

39

SSE

 Adds eight 128-bit registers

 Allows SIMD operations on packed single-precision

floating-point numbers

 Most SSE instructions require 16-aligned addresses

SSE features

 Add eight 128-bit data registers (XMM registers) in

non-64-bit modes; sixteen XMM registers are available

in 64-bit mode.

 32-bit MXCSR register (control and status)

 Add a new data type: 128-bit packed single-precision

floating-point (4 FP numbers.)

 Instruction to perform SIMD operations on 128-bit

packed single-precision FP and additional 64-bit SIMD

integer operations.

12/4/2013

21

41

SSE2 features

 Add data types and instructions for them

SSE programming environment

XMM0

 |

XMM7

MM0

 |

MM7

EAX, EBX, ECX, EDX

EBP, ESI, EDI, ESP

12/4/2013

22

43

SSE packed FP operation

 ADDPS/SUBPS: packed single-precision FP

44

SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP

 used as FPU?

12/4/2013

23

45

SSE2

 Provides ability to perform SIMD operations on

double-precision FP, allowing advanced graphics

such as ray tracing

 Provides greater throughput by operating on 128-

bit packed integers

46

Example

void add(float *a, float *b, float *c) {

 for (int i = 0; i < 4; i++)

 c[i] = a[i] + b[i];

}

__asm {

mov eax, a

mov edx, b

mov ecx, c

movaps xmm0, XMMWORD PTR [eax]

addps xmm0, XMMWORD PTR [edx]

movaps XMMWORD PTR [ecx], xmm0

}

movaps: move aligned packed single-

 precision FP
addps: add packed single-precision FP

12/4/2013

24

SSE Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8

Select[1..0] decides which DW of DEST to be copied to the

1st DW of DEST

...

SSE Shuffle (SHUFPS)

12/4/2013

25

49

Example (cross product)

Vector cross(const Vector& a , const Vector& b) {

 return Vector(

 (a[1] * b[2] - a[2] * b[1]) ,

 (a[2] * b[0] - a[0] * b[2]) ,

 (a[0] * b[1] - a[1] * b[0]));

}

50

Example (cross product)

/* cross */

__m128 _mm_cross_ps(__m128 a , __m128 b) {

 __m128 ea , eb;

 // set to a[1][2][0][3] , b[2][0][1][3]

 ea = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,0,2,1));

 eb = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,1,0,2));

 // multiply

 __m128 xa = _mm_mul_ps(ea , eb);

 // set to a[2][0][1][3] , b[1][2][0][3]

 a = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,1,0,2));

 b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,0,2,1));

 // multiply

 __m128 xb = _mm_mul_ps(a , b);

 // subtract

 return _mm_sub_ps(xa , xb);

}

