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Performance boost 

 Architecture improvements (such as 

pipeline/cache/SIMD) are more significant  

 Intel analyzed multimedia applications and found 

they share the following characteristics: 

 Small native data types (8-bit pixel, 16-bit audio) 

 Recurring operations 

 Inherent parallelism 
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SIMD 

• SIMD (single instruction multiple data) 

architecture performs the same operation on 

multiple data elements in parallel 

• PADDW MM0, MM1 

SISD/SIMD 
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Intel SIMD development 

 MMX (Multimedia Extension) was introduced in 

1996 (Pentium with MMX and Pentium II). 

 SSE (Streaming SIMD Extension) was introduced with 

Pentium III. 

 SSE2 was introduced with Pentium 4. 

 SSE3 was introduced with Pentium 4 supporting 

hyper-threading technology. SSE3 adds 13 more 

instructions. 

 Advanced Vector Extensions (2010) 

 

MMX 

 After analyzing a lot of existing applications such 
as graphics, MPEG, music, speech recognition, game, 
image processing, they found that many multimedia 
algorithms execute the same instructions on many 
pieces of data in a large data set. 

 Typical elements are small, 8 bits for pixels, 16 bits 
for audio, 32 bits for graphics and general 
computing. 

 New data type: 64-bit packed data type.  
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MMX data types 

Each of the MMn registers is a 64-bit integer. However, one of the main concepts of the 

MMX instruction set is the concept of packed data types, which means instead of using 

the whole register for a single 64-bit integer (quadword), two 32-bit integers 

(doubleword), four 16-bit integers (word) or eight 8-bit integers (byte) may be used. 

MMX integration into IA 

79 

11…11 

8 MM0~MM7 

• To simplify the design and to avoid 

modifying the operating system to 

preserve additional state through 

context switches, MMX re-uses the 

existing eight IA-32 FPU registers.  

• This made it difficult to work with 

floating point and SIMD data at the 

same time.  

• To maximize performance, 

programmers must use the processor 

exclusively in one mode or the other 
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MMX instructions 

 57 MMX instructions are defined to perform the 

parallel operations on multiple data elements packed 

into 64-bit data types. 

 These include add, subtract, multiply, 

compare, and shift, data conversion, 64-

bit data move, 64-bit logical 

operation and multiply-add for multiply-

accumulate operations. 

 All instructions except for data move use MMX registers 

as operands. 

 Most complete support for 16-bit operations. 

Saturation arithmetic 

wrap-around saturating 

• Useful in graphics applications. 

• When an operation overflows or underflows, 

the result becomes the largest or smallest 

possible representable number. 

• Two types: signed and unsigned saturation 
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MMX instructions 

12 

MMX instructions 

Call it before you switch to FPU from MMX; 

Expensive operation 
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Arithmetic 

 PADDB/PADDW/PADDD: add two packed 

numbers 

 Multiplication: two steps 

 PMULLW: multiplies four words and stores the four 

lo words of the four double word results 

 PMULHW/PMULHUW: multiplies four words and 

stores the four hi words of the four double word 

results. PMULHUW for unsigned. 

14 

Arithmetic 

 PMADDWD mmi, mmj 
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Example: add a constant to a 

vector 

char d[]={5, 5, 5, 5, 5, 5, 5, 5};  

char clr[]={65,66,68,...,87,88}; // 24 bytes 

__asm{ 

    movq mm1, d  

    mov cx, 3 

    mov esi, 0 

L1: movq mm0, clr[esi]  

    paddb mm0, mm1  

    movq clr[esi], mm0  

    add esi, 8 

    loop L1 

    emms 

}  

16 

Comparison 

• No CFLAGS, how many flags will you need? Results are 

stored in destination. 

• EQ/GT, no LT 
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Change data types 

 Pack: converts a larger data type to the next 

smaller data type. 

 Unpack: takes two operands and interleave them. It 

can be used for expand data type for immediate 

calculation. 

 

 

 

 

Pack with signed saturation 

PACKSSDW mmd, mms 
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Pack with signed saturation 

PACKSSWB mmd, mms 

20 

Unpack low portion 
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Unpack low portion 

22 

Unpack low portion 
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Unpack high portion 

Keys to SIMD programming 

 Efficient data layout 

 Elimination of branches 
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Application: frame difference 

A B 

|A-B| 

26 

Application: frame difference 

A-B B-A 

(A-B) or (B-A) 
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Application: frame difference 

MOVQ      mm1, A //move 8 pixels of image A 

MOVQ      mm2, B //move 8 pixels of image B 

MOVQ      mm3, mm1 // mm3=A 

PSUBSB    mm1, mm2 // mm1=A-B 

PSUBSB    mm2, mm3 // mm2=B-A 

POR       mm1, mm2 // mm1=|A-B| 

Example: image fade-in-fade-out 

A*α+B*(1-α) = B+α(A-B) 

 

A 

 

B 
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α=0.75 

30 

α=0.5 
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α=0.25 

Example: image fade-in-fade-out 

 Two formats: planar and chunky 

 In Chunky format, 16 bits of 64 bits are wasted 

 So, we use planar in the following example 

R G B A R G B A 
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Example: image fade-in-fade-out 

Image A Image B 

Example: image fade-in-fade-out 

MOVQ      mm0, alpha//4 16-b zero-padding α  

MOVD      mm1, A //move 4 pixels of image A 

MOVD      mm2, B //move 4 pixels of image B 

PXOR      mm3, mm3 //clear mm3 to all zeroes 

//unpack 4 pixels to 4 words 

PUNPCKLBW mm1, mm3 // Because B-A could be  

PUNPCKLBW mm2, mm3 // negative, need 16 bits 

PSUBW     mm1, mm2 //(B-A) 

PMULHW    mm1, mm0 //(B-A)*fade/256 

PADDW     mm1, mm2 //(B-A)*fade + B 

//pack four words back to four bytes 

PACKUSWB  mm1, mm3 



12/4/2013 

18 

35 

Data-independent computation 

 Each operation can execute without needing to know the results of a 

previous operation. 

 Example, sprite overlay 

for i=1 to sprite_Size 

  if  sprite[i]=clr  

  then out_color[i]=bg[i] 

  else out_color[i]=sprite[i] 

 

 

 

 

 How to execute data-dependent calculations on several pixels in 

parallel. 

36 

Application: sprite overlay 
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Application: sprite overlay 

MOVQ    mm0, sprite 

MOVQ    mm2, mm0 

MOVQ    mm4, bg 

MOVQ    mm1, clr 

PCMPEQW mm0, mm1 

PAND    mm4, mm0 

PANDN   mm0, mm2 

POR     mm0, mm4 
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Performance boost (data from 

1996) 

Benchmark kernels: FFT, FIR, 

vector dot-product, IDCT, 

motion compensation. 

 

65% performance gain 

 

Lower the cost of multimedia 

programs by removing the 

need of specialized DSP 

chips 
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SSE 

 Adds eight 128-bit registers 

 Allows SIMD operations on packed single-precision 

floating-point numbers 

 Most SSE instructions require 16-aligned addresses 

 

SSE features 

 Add eight 128-bit data registers (XMM registers) in 

non-64-bit modes; sixteen XMM registers are available 

in 64-bit mode. 

 32-bit MXCSR register (control and status) 

 Add a new data type: 128-bit packed single-precision 

floating-point (4 FP numbers.) 

 Instruction to perform SIMD operations on 128-bit 

packed single-precision FP and additional 64-bit SIMD 

integer operations. 



12/4/2013 

21 

41 

SSE2 features 

 Add data types and instructions for them 

 

 

 

 

 

 

 

 

 

SSE programming environment 

XMM0 

 | 

XMM7 

MM0 

 | 

MM7 

EAX, EBX, ECX, EDX 

EBP, ESI, EDI, ESP 
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SSE packed FP operation 

 ADDPS/SUBPS: packed single-precision FP 

44 

SSE scalar FP operation 

• ADDSS/SUBSS: scalar single-precision FP 

                           used as FPU? 
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SSE2 

 Provides ability to perform SIMD operations on 

double-precision FP, allowing advanced graphics 

such as ray tracing 

 Provides greater throughput by operating on 128-

bit packed integers 

46 

Example 

void add(float *a, float *b, float *c) { 

  for (int i = 0; i < 4; i++) 

    c[i] = a[i] + b[i]; 

} 

__asm { 

mov    eax, a 

mov    edx, b 

mov    ecx, c 

movaps xmm0, XMMWORD PTR [eax] 

addps  xmm0, XMMWORD PTR [edx] 

movaps XMMWORD PTR [ecx], xmm0 

} 

movaps: move aligned packed single- 

              precision FP 
addps: add packed single-precision FP 
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SSE Shuffle (SHUFPS) 

SHUFPS xmm1, xmm2, imm8 

Select[1..0] decides which DW of DEST to be copied to the 

1st DW of DEST 

... 

SSE Shuffle (SHUFPS) 
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Example (cross product) 

Vector cross(const Vector& a , const Vector& b ) { 

    return Vector( 

        ( a[1] * b[2] - a[2] * b[1] ) , 

        ( a[2] * b[0] - a[0] * b[2] ) , 

        ( a[0] * b[1] - a[1] * b[0] ) ); 

} 

50 

Example (cross product) 

/* cross */ 

__m128 _mm_cross_ps( __m128 a , __m128 b ) { 

  __m128 ea , eb; 

  // set to a[1][2][0][3] , b[2][0][1][3] 

  ea = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,0,2,1) ); 

  eb = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,1,0,2) ); 

  // multiply 

  __m128 xa = _mm_mul_ps( ea , eb ); 

  // set to a[2][0][1][3] , b[1][2][0][3] 

  a = _mm_shuffle_ps( a, a, _MM_SHUFFLE(3,1,0,2) ); 

  b = _mm_shuffle_ps( b, b, _MM_SHUFFLE(3,0,2,1) ); 

  // multiply 

  __m128 xb = _mm_mul_ps( a , b ); 

  // subtract 

  return _mm_sub_ps( xa , xb ); 

} 


