Introduction to MOO

- Most real-world engineering optimization problems are multi-objective in nature
- Objectives are often conflicting
 - Performance vs. Silicon area
 - →Quality vs. Cost
 - → Efficiency vs. Portability
 - →...
- The notion of optimum has to be re-defined

Statement of the Problem

- Multiobjective optimization (multicriteria, multiperformance, vector optimization)
 - Find a vector of decision variables which satisfies constraints and optimizes a vector function whose elements represent the objective functions
 - Objectives are usually in conflict with each other
 - Optimize: finding solutions which would give the values of all the objective functions acceptable to the designer

Mathematical Formulation

Find the vector

$$\overline{x} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$$

Which will satisfy the *m* inequality constraints

$$g_i(\bar{x}) \ge 0$$
 $i=1,2,\ldots,m$

The p equality constraints

$$h_i(\bar{x})=0$$
 $i=1,2,...,p$
timizes the vector function

And opt

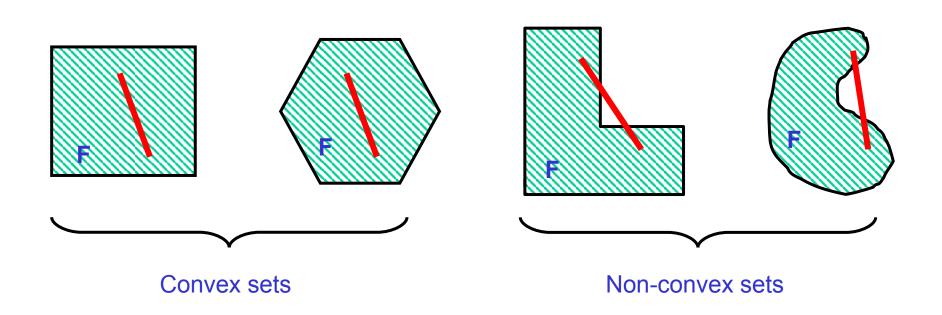
$$\overline{f}(\overline{x}) = [f_1(\overline{x}), f_2(\overline{x}), \dots, f_k(\overline{x})]$$

Maurizio Palesi

Feasible Region

$$g_i(\bar{x}) \ge 0$$
 $i=1,2,...,m$
 $h_i(\bar{x})=0$ $i=1,2,...,p$

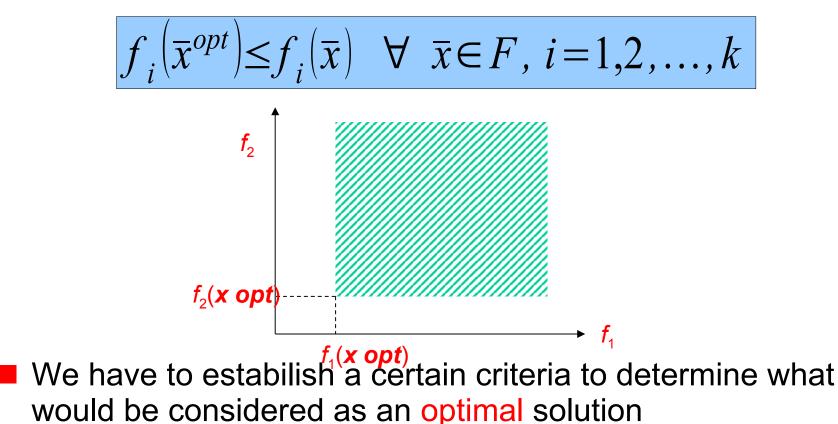
Define the *feasible region F*



Maurizio Palesi

Meaning of Optimum

We rarely have an x optimum such that



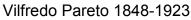
Maurizio Palesi

Pareto Set

- A solution x o F is said to dominate y o F
 F if
 - $\rightarrow x$ is better or equal to y in all attributes
 - x is strictly better than y in at least one attribute
- Formally, **x** dominate **y** $f_i(\bar{x}) \le f_i(\bar{y}), i=1,2,...,k$

The Pareto set consists of solutions that are not dominated by any other solutions

 $\exists j \in \{1, 2, ..., k\}: f_i(\bar{x}) < f_i(\bar{y})$



Pareto Front

