
1

ARM Processors and Architectures

Tratto in parte da

ARM University Program

ARM

 ARM was developed at Acorn Computer Limited of
Cambridge, UK (between 1983 & 1985)

 RISC concept introduced in 1980 at Stanford and Berkeley

 ARM founded in November 1990

 Advanced RISC Machines

 Best known for its range of RISC processor cores designs

 Other products – fabric IP, software tools, models, cell libraries -
to help partners develop and ship ARM-based SoCs

 ARM does not manufacture silicon

 Licensed to partners to develop and fabricate new micro-
controllers
 Soft-core

2

ARM architecture

 Based upon RISC Architecture with enhancements to

meet requirements of embedded applications

 A large uniform register file

 Load-store architecture

 Fixed length instructions

 32-bit processor

 Good speed/power

 High code density

Enhancement to Basic RISC

 Control over ALU and shifter for every data

processing operations

 Auto-increment and auto-decrement addressing

modes

 To optimize program loops

 Load/Store multiple data instructions

 To maximize data throughput

 Conditional execution of instructions

 To maximize execution throughput

3

Embedded Processors

Application Processors

4

Architecture Revisions

1998 2000 2002 2004 time

v
e
rs

io
n

ARMv5

ARMv6

1994 1996 2006

V4

StrongARM®
ARM926EJ-S™

XScaleTM ARM102xE ARM1026EJ-S™

ARM9x6E

ARM92xT

ARM1136JF-S™

ARM7TDMI-S™

ARM720T™

ARMv7

SC100™

SC200™

ARM1176JZF-S™

ARM1156T2F-S™

26-bit

addressing,

no multiply

no coprocessor

32 bit multiply

coprocessor

32-bit addressing

v1 v2 v3

Development of the ARM Architecture

5

Halfword and

signed halfword /

byte support

System mode

Thumb instruction

set (v4T)

Improved interworking

CLZ

Saturated arithmetic

DSP MAC instructions

Extensions: Jazelle

(5TEJ)

SIMD Instructions

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone® (6Z)

Multicore (6K)

Thumb only (6-M)

 Note that implementations of the same architecture can be different

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

7-A - Applications

7-R - Real-time

7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

Architecture ARMv7 profiles

 Application profile (ARMv7-A)
 Memory management support (MMU)

 Highest performance at low power
 Influenced by multi-tasking OS system requirements

 TrustZone and Jazelle-RCT for a safe, extensible system

 e.g. Cortex-A5, Cortex-A9

 Real-time profile (ARMv7-R)
 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Evolutionary path for traditional embedded business

 e.g. Cortex-R4

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
 Lowest gate count entry point

 Deterministic and predictable behavior a key priority

 Deeply embedded use

 e.g. Cortex-M3

6

Which architecture is my processor?

Cortex-A8

 ARMv7-A Architecture

 Thumb-2

 Thumb-2EE (Jazelle-RCT)

 TrustZone extensions

 Custom or synthesized design

 MMU

 64-bit or 128-bit AXI Interface

 L1 caches

 16 or 32KB each

 Unified L2 cache

 0-2MB in size

 8-way set-associative

 Optional features

 VFPv3 Vector Floating-Point

 NEON media processing engine

 Dual-issue, super-scalar 13-stage pipeline

 Branch Prediction & Return Stack

 NEON and VFP implemented at end of pipeline

7

Cortex-A9

 ARMv7-A Architecture

 Thumb-2, Thumb-2EE

 TrustZone support

 Variable-length Multi-issue
pipeline

 Register renaming

 Speculative data prefetching

 Branch Prediction & Return

 Stack

 64-bit AXI instruction and data
interfaces

 TrustZone extensions

 L1 Data and Instruction caches

 16-64KB each

 4-way set-associative

 Optional features:

 PTM instruction trace interface

 IEM power saving support

 Full Jazelle DBX support

 VFPv3-D16 Floating-Point Unit (FPU) or

NEON™ media processing engine

Cortex-A15 MPCore

 1-4 processors per cluster

 Fixed size L1 caches (32KB)

 Integrated L2 Cache

 512KB – 4MB

 System-wide coherency
support with AMBA 4 ACE

 Backward-compatible with
AXI3 interconnect

 Integrated Interrupt Controller

 0-224 external interrupts for
entire cluster

 CoreSight debug

 Advanced Power Management

 Large Physical Address Extensions (LPAE) to ARMv7-A Architecture

 Virtualization Extensions to ARMv7-A Architecture

8

Pipeline changes for ARM9TDMI

Instruction

Fetch
 Shift + ALU Memory

Access

Reg

Write Reg

Read

Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb

Inst Decode

Reg Select

Reg

Read
Shift ALU

Reg

Write
ThumbARM

decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI

ARM10 vs. ARM11 Pipelines

ARM11

Fetch

1

Fetch

2
Decode Issue

Shift ALU Saturate

Write

back

MAC

1

MAC

2

MAC

3

Address

Data

Cache

1

Data

Cache

2

Shift + ALU
Memory

Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch

Prediction

Instruction

Fetch

ISSUE

ARM or

Thumb

Instruction

Decode Multiply

Add

ARM10

9

Data Sizes and Instruction Sets

 ARM is a 32-bit load / store RISC architecture

 The only memory accesses allowed are loads and stores

 Most internal registers are 32 bits wide

 Most instructions execute in a single cycle

 When used in relation to ARM cores

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Doubleword means 64 bits (eight bytes)

Data Sizes and Instruction Sets

 ARM cores implement two basic instruction sets

 ARM instruction set – instructions are all 32 bits long

 Thumb instruction set – instructions are a mix of 16 and 32 bits

 Thumb-2 technology added many extra 32- and 16-bit instructions to the

original 16-bit Thumb instruction set

 Depending on the core, may also implement other instruction sets

 VFP instruction set – 32 bit (vector) floating point instructions

 NEON instruction set – 32 bit SIMD instructions

 Jazelle-DBX - provides acceleration for Java VMs (with additional

software support)

 Jazelle-RCT - provides support for interpreted languages

10

Core Data Path

 Data items are placed in register file

 No data processing instructions directly manipulate

data in memory

 Instructions typically use two source registers and a

single destination register

 A barrel shifter on the data path can preprocess

data before it enters ALU

 Increment/decrement logic can update register

content for sequential access independent of ALU

Basic ARM Organization

11

Registers

 General Purpose registers hold either data or
address

 All registers are of 32 bits

 In user mode 16 data registers and 2 status
registers are visible

 Data registers: r0 to r15

 r13, r14, and r15 perform special functions

 r13: stack pointer

 r14: link register

 r15: program counter

Registers

 Depending upon context, registers r13 and r14 can

also be used as GPR

 Any instruction which use r0 can as well be used

with any other GPR (r1-r13)

 Two status registers

 CPSR: Current Program Status Register

 SPSR: Saved Program Status Register

12

Processor Modes

 Processor modes determine

 Which registers are active

 Access right to CPSR registers itself

 Each processor mode is either

 Privileged: full read-write access to the CPSR

 Non-privileged: only read access to the control field of

CPSR but read-write access to the condition flags

Processor Modes

 ARM has seven basic operating modes

 Each mode has access to its own space and a different subset of registers

 Some operations can only be carried out in a privileged mode

Mode Description

Supervisor

(SVC)

Entered on reset and when a Supervisor call

instruction (SVC) is executed

Privileged

modes

FIQ
Entered when a high priority (fast) interrupt is

raised

IRQ Entered when a normal priority interrupt is raised

Abort Used to handle memory access violations

Undef Used to handle undefined instructions

System
Privileged mode using the same registers as User

mode

User
Mode under which most Applications / OS tasks

run

Unprivileged

mode

E
x
ce

p
ti

o
n
 m

o
d
e
s

13

The ARM Register Set

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits long

A subset of these registers is accessible in each

mode

Note: System mode uses the User mode

register set.

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Indicates if saturation has occurred

 SIMD Condition code bits – GE[3:0]

 Used by some SIMD instructions

 IF THEN status bits – IT[abcde]

 Controls conditional execution of Thumb
instructions

 T bit

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 J bit

 J = 1: Processor in Jazelle state

 Mode bits

 Specify the processor mode

 Interrupt Disable bits

 I = 1: Disables IRQ

 F = 1: Disables FIQ

 E bit

 E = 0: Data load/store is little endian

 E = 1: Data load/store is bigendian

 A bit

 A = 1: Disable imprecise data aborts

f s x c

27 31 28 6 7 16 23

15

5 4 0 24

J

10 8 9 19

 Q T I F mode N Z C V IT[abc] [de] E A GE[3:0]

14

 When the processor is executing in ARM state:

 All instructions are 32 bits wide

 All instructions must be word aligned

 Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned)

 When the processor is executing in Thumb state:

 All instructions are 16 bits wide

 All instructions must be halfword aligned

 Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned)

 When the processor is executing in Jazelle state:

 All instructions are 8 bits wide

 Processor performs a word access to read 4 instructions at once

Program Counter (r15)

Mode Changing

Mode changes by writing directly to CPSR

or by hardware when the processor

responds to exception or interrupt

To return to user mode a special return

instruction is used that instructs the core to

restore the original CPSR and banked

registers

15

ARM Memory Organization

 Can be configured as

Little Endian

Big Endian

 Addresses are for each byte

ARM Instruction Set

16

Instructions

 Instruction process data held in registers

and access memory with load and store

instructions

Classes of instructions

Data processing

Branch instructions

Load-store instructions

Software interrupt instruction

Program status register instructions

Features of ARM Instruction Set

3-address data processing instructions

Conditional execution of every instruction

Load and store multiple registers

Shift, ALU operation in a single instruction

Open instruction set extension through the

co-processor instruction

17

ARM Data Types

Word is 32 bits long

Word can be divided into four 8-bit bytes

ARM addresses can be 32 bit long

Address refers to byte

Can be configured at power-up as either

little- or big-endian mode

Data Processing Instructions

 Consist of :
 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:
 <Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd
 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

 Suffix S on data processing instructions updates flags in CPSR

18

Data Processing Instructions

Operands are 32-bit wide

Come from registers of specified as literal in

the instruction itself

Second operand sent to ALU via barrel

shifter

32-bit result placed in register

Long multiply instruction produces 64-bit

result

Move instruction

MOV Rd, N

Rd: destination register

N: can be an immediate value or source

register

Example: MOV r7, r5

MVN Rd, N

Move into Rd not of the 32-bit value from

source

19

Using Barrel Shifter

 Enables shifting 32-bit operand in one of the

source registers left or right by a specific

number of positions within the cycle time of

instruction

 Basic Barrel shifter operations

Shift left, shift right, rotate right

 Facilitate fast multiply, division and increases

code density

 Example: MOV r7, r5, LSL #2

Multiplies content of r5 by 4 and puts result in r7

Arithmetic Instructions

 Implements 32-bit addition and

subtraction

3-operand form

Examples

SUB r0, r1, r2

– Subtract value stored in r2 from that of r1 and store in r0

SUBS r1, r1, #1

– Subtract 1 from r1 and store result in r1 and update Z

and C flags

20

Register, optionally with shift operation

 Shift value can be either be:
 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by
constant

Immediate value

 8 bit number, with a range of
0-255.
 Rotated right through even

number of positions

 Allows increased range of 32-
bit constants to be loaded
directly into registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd

Operand

Data Processing Exercise

 1. How would you load the two’s complement
representation of -1 into Register 3 using one instruction?

 2. Implement an ABS (absolute value) function for a
registered value using only two instructions.

 3. Multiply a number by 35, guaranteeing that it executes
in 2 core clock cycles.

21

Data Processing Solutions

 1. MOVN r6, #0

 2. MOVS r7,r7 ; set the flags

 RSBMI r7,r7,#0 ; if neg, r7=0-r7

 3. ADD r9,r8,r8,LSL #2 ; r9=r8*5

 RSB r10,r9,r9,LSL #3 ; r10=r9*7

 No ARM instruction can contain a 32 bit immediate constant

 All ARM instructions are fixed as 32 bits long

 The data processing instruction format has 12 bits available for
operand2

 4 bit rotate value (0-15) is multiplied by two to give range 0-30
in steps of 2

 Rule to remember is

 “8-bits rotated right by an even number of bit positions”

0 7 11 8

immed_8

Shifter

ROR

rot

x2

Quick Quiz:
0xe3a004ff

MOV r0, #???

Immediate constants

22

 There are 2 classes of multiply - producing 32-bit and 64-bit results

 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

 MUL r0, r1, r2 ; r0 = r1 * r2

 MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

 64-bit multiply instructions offer both signed and unsigned versions

 For these instruction there are 2 destination registers

 [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3

 [U|S]MLAL r4, r5, r2, r3 ; r5:r4 = (r2 * r3) + r5:r4

 Most ARM cores do not offer integer divide instructions

 Division operations will be performed by C library routines or inline shifts

Multiply and Divide

Logical Instructions

Bit wise logical operations on the two

source registers

AND, OR, Ex-OR, bit clear

Example: BIC r0, r1, r2

R2 contains a binary pattern where every binary 1

in r2 clears a corresponding bit location in register

r1

Useful in manipulating status flags and interrupt

masks

23

Compare Instructions

Enables comparison of 32 bit values

Updates CPSR flags but do not affect other

registers

Examples

CMP r0, r9

– Flags set as a result of r0 - r9

TEQ r0, r9

– Flags set as a result r0 ex-or r9

TST r0, r9

– Flags set as a result of r0 & r9

Instruction Set basics

 The ARM Architecture is a Load/Store architecture

 No direct manipulation of memory contents

 Memory must be loaded into the CPU to be modified, then
written back out

 Cores are either in ARM state or Thumb state

 This determines which instruction set is being executed

 An instruction must be executed to switch between states

 The architecture allows programmers and compilation tools
to reduce branching through the use of conditional execution

 Method differs between ARM and Thumb, but the principle is that
most (ARM) or all (Thumb) instructions can be executed
conditionally.

24

Load-Store Instructions

Transfer data between memory and

processor registers

Single register transfer

Data types supported are signed and unsigned

words (32 bits), half-word, bytes

Multiple-register transfer

Transfer multiple registers between memory and

the processor in a single instruction

Swap

Swaps content of a memory location with the

contents of a register

Single Transfer Instructions

25

Single Access Data Transfer

 Use to move data between one or two registers and memory
 LDRD STRD Doubleword

 LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

 Syntax:
 LDR{<size>}{<cond>} Rd, <address>

 STR{<size>}{<cond>} Rd, <address>

 Example:
 LDRB r0, [r1] ; load bottom byte of r0 from the
 ; byte of memory at address in r1

Upper bits zero filled or

sign extended on Load

Memory

Rd

31 0

Single Transfer Instructions

 Load & Store data on a boundary alignment

LDR, LDRH, LDRB

Load (word, half-word, byte)

STR, STRH, STRB

Store (word, half-word, byte)

 Supports different addressing modes

Register indirect: LDR r0, [r1]

Immediate: LDR r0, [r1,#4]

12-bit offset added to the base register

Register operation: LDR r0, [r1,-r2]

Address calculated using base register and another register

26

More Addressing Modes

Scaled

Address is calculated using the base

address register and a barrel shift operation

Pre & Post Indexing

Pre-index with write back: LDR r0, [r1,#4]!

Updates the address base register with new

address

Post index: LDR r0, [r1], #4

Updates the address register after address is

used

Example

Pre-indexing with write back

LDR r0, [r1,#4]!

Before instruction execution

r0 = 0x00000000 r1 = 0x00009000

Mem32[0x00009000] = 0x01010101

Mem32[0x00009004] = 0x02020202

After instruction execution

r0 = 0x02020202

r1 = 0x00009004

27

Multiple Register Transfer

 Load-store multiple instructions transfer multiple

register contents between memory and the

processor in a single instruction

More efficient for moving blocks of memory and

saving and restoring context and stack

 These instructions can increase interrupt

latency

Instruction executions are not interrupted by ARM

Multiple Byte Load-Store

Any subset of current bank of registers

can be transferred to memory or fetched

from memory

LDM

SDM

The base register Rn determines source

or destination address

28

 These instructions move data between multiple registers and memory

 Syntax

 <LDM|STM>{<addressing_mode>}{<cond>} Rb{!}, <register list>

 4 addressing modes

 Increment after/before

 Decrement after/before

 Also

 PUSH/POP, equivalent to STMDB/LDMIA with SP! as base register

 Example

 LDM r10, {r0,r1,r4} ; load registers, using r10 base

 PUSH {r4-r6,pc} ; store registers, using SP base

Multiple Register Data Transfer

(IA)

r1 Increasing

Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

Base Register (Rb)

Example

Moving a large data block
; R12 points to the start if the source data

; R14 points to the end of the source data

; R13 points to the start of the destination data

Loop LDMIA R12!, {R0-R11} ; load 48 bytes...

 STMIA R13!, {R0-R11} ; ...and store them

 CMP R12, R14 ; check for the end

 BNE Loop ; and loop until done

29

Addressing Modes

 LDMIA|IB|DA|DB ex: LDMIA Rn!, {r1-r3}

 STMIA|IB|DA|DB

Stack Processing

A stack is implemented as a linear data

structure which grows up (ascending) or

down (descending)

Stack pointer hold the address of the

current top of the stack

30

Modes of Stack Operation

ARM multiple register transfer instructions

support

Full ascending: grows up, SP points to the

highest address containing a valid item

Empty ascending: grows up, SP points to the

first empty location above stack

Full descending: grows down, SP points to

the lowest address containing a valid data

Empty descending: grows down, SP points

to the first location below the stack

Some Stack Instructions

Full Ascending

LDMFA: translates to LDMIA (POP)

STMFA: translates to STMIB (PUSH)

SP points to last item in stack

Empty Descending

LDMED: translates to LDMIB (POP)

STMED: translates to STMIA (PUSH)

SP points to first unused location

31

Stack Example

SWAP Instruction

Special case of load store instruction

Swap instructions

SWP: swap a word between memory and

register

SWPB: swap a byte between memory and

register

Useful for implementing synchronization

primitives like semaphore

32

 ARM instructions can be made to execute conditionally by postfixing them with the

appropriate condition code field.

 This improves code density and performance by reducing the number of forward branch

instructions.

 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but the flags

can be optionally set by using “S”. CMP does not need “S”.

 loop

 …

 SUBS r1,r1,#1

 BNE loop

 if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

Condition Codes

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V

 The possible condition codes are listed below

 Note AL is the default and does not need to be specified

33

Conditional execution examples

if (r0 == 0)

{

 r1 = r1 + 1;

}

else

{

 r2 = r2 + 1;

}

C source code

 5 instructions

 5 words

 5 or 6 cycles

 3 instructions

 3 words

 3 cycles

 CMP r0, #0

 BNE else

 ADD r1, r1, #1

 B end

else

 ADD r2, r2, #1

end

 ...

ARM instructions

 unconditional

 CMP r0, #0

 ADDEQ r1, r1, #1

 ADDNE r2, r2, #1

 ...

conditional

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it and
adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch instructions

34

Branch instruction

 Branch instruction: B label

 Example: B forward

 Address label is stored in the instruction as a signed pc-

relative offset

 Conditional Branch: B<cond> label

 Example: BNE loop

 Branch has a condition associated with it and executed

if condition codes have the correct value

Example: Block Memory Copy

Loop LDMIA r9!, {r0-r7}

 STMIA r10!, {r0-r7}

 CMP r9, r11

 BNE Loop

 r9 points to source of data, r10 points to start of

destination data, r11 points to end of the source

35

Branch & Link Instruction

 Perform a branch, save the address following the branch in the

link register, r14

 Example: BL subroutine

 For nested subroutine, push r14 and some work registers

required to be saved onto a stack in memory

 BL Sub1

 …

Sub1 STMFD R13!,{R0-R2,R14}

 …

 BL Sub2

 LDMFD R13!,{R0-R2,PC}

Subroutine Return Instructions

 No specific instructions

 Example

sub:

…

MOV PC, r14

 When return address has been pushed to stack

sub:

 …

 LDMFD r13!, {r0-r12,PC}

36

Register Usage

r8

r9/sb

r10/sl

r11

r12

r13/sp

r14/lr

r15/pc

r0

r1

r2

r3

r4

r5

r6

r7 Register variables

Must be preserved

Arguments into function

Result(s) from function

otherwise corruptible

(Additional parameters

passed on stack)

Scratch register

(corruptible)

Stack Pointer

Link Register

Program Counter

The compiler has a set of rules known as a Procedure

Call Standard that determine how to pass parameters

to a function (see AAPCS)

CPSR flags may be corrupted by function call.

Assembler code which links with compiled code must

follow the AAPCS at external interfaces

The AAPCS is part of the new ABI for the ARM

Architecture

Register

- Stack base

- Stack limit if software stack checking selected

- R14 can be used as a temporary once value stacked

- SP should always be 8-byte (2 word) aligned

:

BL func2

:

:

BX lr

func1 func2
void func1 (void)

{

 :

 func2();

 :

}

Subroutines

 Implementing a conventional subroutine call requires two steps

 Store the return address

 Branch to the address of the required subroutine

 These steps are carried out in one instruction, BL

 The return address is stored in the link register (lr/r14)

 Branch to an address (range dependent on instruction set and width)

 Return is by branching to the address in lr

37

Supervisor Call (SVC)

SVC{<cond>} <SVC number>

 Causes an SVC exception

 The SVC handler can examine the SVC number to decide what

operation has been requested

 But the core ignores the SVC number

 By using the SVC mechanism, an operating system can implement a set

of privileged operations (system calls) which applications running in

user mode can request

 Thumb version is unconditional

Vector Table

Exception Handling

 When an exception occurs, the core…
 Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits
 Change to ARM state (if appropriate)
 Change to exception mode

 Disable interrupts (if appropriate)

 Stores the return address in LR_<mode>

 Sets PC to vector address

 To return, exception handler needs to…
 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

 Cores can enter ARM state or Thumb state when

 taking an exception
 Controlled through settings in CP15

 Note that v7-M and v6-M exception model is different

Vector table can also be at

0xFFFF0000 on most cores

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Supervisor Call

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

38

Exception handling process

1. Save processor status

 Copies CPSR into SPSR_<mode>

 Stores the return address in LR_<mode>

 Adjusts LR based on exception type

2. Change processor status for exception

 Mode field bits

 ARM or Thumb state

 Interrupt disable bits (if appropriate)

 Sets PC to vector address

3. Execute exception handler

 <users code>

4. Return to main application

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

 1 and 2 performed automatically by the core

 3 and 4 responsibility of software

Exception

handler

Main

Application

What is NEON?

 NEON is a wide SIMD data processing architecture

 Extension of the ARM instruction set (v7-A)

 32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)

 NEON instructions perform “Packed SIMD” processing

 Registers are considered as vectors of elements of the same data type

 Data types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec. float

 Instructions usually perform the same operation in all lanes

Dn

Dm

Dd

Lane

Source

Registers

Source

Registers

Operation

Destination

Register

Elements Elements Elements

39

NEON Coprocessor registers

 NEON has a 256-byte register file

 Separate from the core registers (r0-r15)

 Extension to the VFPv2 register file (VFPv3)

 Two different views of the NEON registers

 32 x 64-bit registers (D0-D31)

 16 x 128-bit registers (Q0-Q15)

 Enables register trade-offs

 Vector length can be variable

 Different registers available

Q0

Q1

Q15

:

D0

D1

D2

D3

:

D30

D31

D0

D1

D2

D3

:

NEON vectorizing example

 How does the compiler perform vectorization?

void add_int(int * __restrict pa,

 int * __restrict pb,

 unsigned int n, int x)

{

 unsigned int i;

 for(i = 0; i < (n & ~3); i++)

 pa[i] = pb[i] + x;

} 1. Analyze each loop:

 Are pointer accesses safe for

vectorization?

 What data types are being used?

How do they map onto NEON vector

registers?

 Number of loop iterations

void add_int(int *pa, int *pb,

 unsigned n, int x)

{

 unsigned int i;

 for (i = ((n & ~3) >> 2); i; i--)

 {

 *(pa + 0) = *(pb + 0) + x;

 *(pa + 1) = *(pb + 1) + x;

 *(pa + 2) = *(pb + 2) + x;

 *(pa + 3) = *(pb + 3) + x;

 pa += 4; pb += 4;

 }

}

2. Unroll the loop to the appropriate number of

iterations, and perform other transformations

like pointerization

3. Map each unrolled operation onto a

NEON vector lane, and generate

corresponding NEON instructions

+ + + +

pb

x

pa

+

0 127

40

 Thumb is a 16-bit instruction set

 Optimised for code density from C code (~65% of ARM code size)

 Improved performance from narrow memory

 Subset of the functionality of the ARM instruction set

 Core has additional execution state - Thumb

 Switch between ARM and Thumb using BX instruction

0 1

5

31 0 ADDS r2,r2,#1

ADD r2,#1

32-bit ARM Instruction

16-bit Thumb

Instruction

For most instructions generated by compiler:

 Conditional execution is not used

 Source and destination registers identical

 Only Low registers used

 Constants are of limited size

 Inline barrel shifter not used

Thumb

79

