
1

ARM Processors and Architectures

Tratto in parte da

ARM University Program

ARM

 ARM was developed at Acorn Computer Limited of
Cambridge, UK (between 1983 & 1985)

 RISC concept introduced in 1980 at Stanford and Berkeley

 ARM founded in November 1990

 Advanced RISC Machines

 Best known for its range of RISC processor cores designs

 Other products – fabric IP, software tools, models, cell libraries -
to help partners develop and ship ARM-based SoCs

 ARM does not manufacture silicon

 Licensed to partners to develop and fabricate new micro-
controllers
 Soft-core

2

ARM architecture

 Based upon RISC Architecture with enhancements to

meet requirements of embedded applications

 A large uniform register file

 Load-store architecture

 Fixed length instructions

 32-bit processor

 Good speed/power

 High code density

Enhancement to Basic RISC

 Control over ALU and shifter for every data

processing operations

 Auto-increment and auto-decrement addressing

modes

 To optimize program loops

 Load/Store multiple data instructions

 To maximize data throughput

 Conditional execution of instructions

 To maximize execution throughput

3

Embedded Processors

Application Processors

4

Architecture Revisions

1998 2000 2002 2004 time

v
e
rs

io
n

ARMv5

ARMv6

1994 1996 2006

V4

StrongARM®
ARM926EJ-S™

XScaleTM ARM102xE ARM1026EJ-S™

ARM9x6E

ARM92xT

ARM1136JF-S™

ARM7TDMI-S™

ARM720T™

ARMv7

SC100™

SC200™

ARM1176JZF-S™

ARM1156T2F-S™

26-bit

addressing,

no multiply

no coprocessor

32 bit multiply

coprocessor

32-bit addressing

v1 v2 v3

Development of the ARM Architecture

5

Halfword and

signed halfword /

byte support

System mode

Thumb instruction

set (v4T)

Improved interworking

CLZ

Saturated arithmetic

DSP MAC instructions

Extensions: Jazelle

(5TEJ)

SIMD Instructions

Multi-processing

v6 Memory architecture

Unaligned data support

Extensions:

Thumb-2 (6T2)

TrustZone® (6Z)

Multicore (6K)

Thumb only (6-M)

 Note that implementations of the same architecture can be different

 Cortex-A8 - architecture v7-A, with a 13-stage pipeline

 Cortex-A9 - architecture v7-A, with an 8-stage pipeline

Thumb-2

Architecture Profiles

7-A - Applications

7-R - Real-time

7-M - Microcontroller

v4 v5 v6 v7

Development of the ARM Architecture

Architecture ARMv7 profiles

 Application profile (ARMv7-A)
 Memory management support (MMU)

 Highest performance at low power
 Influenced by multi-tasking OS system requirements

 TrustZone and Jazelle-RCT for a safe, extensible system

 e.g. Cortex-A5, Cortex-A9

 Real-time profile (ARMv7-R)
 Protected memory (MPU)

 Low latency and predictability ‘real-time’ needs

 Evolutionary path for traditional embedded business

 e.g. Cortex-R4

 Microcontroller profile (ARMv7-M, ARMv7E-M, ARMv6-M)
 Lowest gate count entry point

 Deterministic and predictable behavior a key priority

 Deeply embedded use

 e.g. Cortex-M3

6

Which architecture is my processor?

Cortex-A8

 ARMv7-A Architecture

 Thumb-2

 Thumb-2EE (Jazelle-RCT)

 TrustZone extensions

 Custom or synthesized design

 MMU

 64-bit or 128-bit AXI Interface

 L1 caches

 16 or 32KB each

 Unified L2 cache

 0-2MB in size

 8-way set-associative

 Optional features

 VFPv3 Vector Floating-Point

 NEON media processing engine

 Dual-issue, super-scalar 13-stage pipeline

 Branch Prediction & Return Stack

 NEON and VFP implemented at end of pipeline

7

Cortex-A9

 ARMv7-A Architecture

 Thumb-2, Thumb-2EE

 TrustZone support

 Variable-length Multi-issue
pipeline

 Register renaming

 Speculative data prefetching

 Branch Prediction & Return

 Stack

 64-bit AXI instruction and data
interfaces

 TrustZone extensions

 L1 Data and Instruction caches

 16-64KB each

 4-way set-associative

 Optional features:

 PTM instruction trace interface

 IEM power saving support

 Full Jazelle DBX support

 VFPv3-D16 Floating-Point Unit (FPU) or

NEON™ media processing engine

Cortex-A15 MPCore

 1-4 processors per cluster

 Fixed size L1 caches (32KB)

 Integrated L2 Cache

 512KB – 4MB

 System-wide coherency
support with AMBA 4 ACE

 Backward-compatible with
AXI3 interconnect

 Integrated Interrupt Controller

 0-224 external interrupts for
entire cluster

 CoreSight debug

 Advanced Power Management

 Large Physical Address Extensions (LPAE) to ARMv7-A Architecture

 Virtualization Extensions to ARMv7-A Architecture

8

Pipeline changes for ARM9TDMI

Instruction

Fetch
 Shift + ALU Memory

Access

Reg

Write Reg

Read

Reg

Decode

FETCH DECODE EXECUTE MEMORY WRITE

ARM9TDMI

ARM or Thumb

Inst Decode

Reg Select

Reg

Read
Shift ALU

Reg

Write
ThumbARM

decompress

ARM decode
Instruction

Fetch

FETCH DECODE EXECUTE

ARM7TDMI

ARM10 vs. ARM11 Pipelines

ARM11

Fetch

1

Fetch

2
Decode Issue

Shift ALU Saturate

Write

back

MAC

1

MAC

2

MAC

3

Address

Data

Cache

1

Data

Cache

2

Shift + ALU
Memory

Access Reg

Write

FETCH DECODE EXECUTE MEMORY WRITE

Reg Read

Multiply

Branch

Prediction

Instruction

Fetch

ISSUE

ARM or

Thumb

Instruction

Decode Multiply

Add

ARM10

9

Data Sizes and Instruction Sets

 ARM is a 32-bit load / store RISC architecture

 The only memory accesses allowed are loads and stores

 Most internal registers are 32 bits wide

 Most instructions execute in a single cycle

 When used in relation to ARM cores

 Halfword means 16 bits (two bytes)

 Word means 32 bits (four bytes)

 Doubleword means 64 bits (eight bytes)

Data Sizes and Instruction Sets

 ARM cores implement two basic instruction sets

 ARM instruction set – instructions are all 32 bits long

 Thumb instruction set – instructions are a mix of 16 and 32 bits

 Thumb-2 technology added many extra 32- and 16-bit instructions to the

original 16-bit Thumb instruction set

 Depending on the core, may also implement other instruction sets

 VFP instruction set – 32 bit (vector) floating point instructions

 NEON instruction set – 32 bit SIMD instructions

 Jazelle-DBX - provides acceleration for Java VMs (with additional

software support)

 Jazelle-RCT - provides support for interpreted languages

10

Core Data Path

 Data items are placed in register file

 No data processing instructions directly manipulate

data in memory

 Instructions typically use two source registers and a

single destination register

 A barrel shifter on the data path can preprocess

data before it enters ALU

 Increment/decrement logic can update register

content for sequential access independent of ALU

Basic ARM Organization

11

Registers

 General Purpose registers hold either data or
address

 All registers are of 32 bits

 In user mode 16 data registers and 2 status
registers are visible

 Data registers: r0 to r15

 r13, r14, and r15 perform special functions

 r13: stack pointer

 r14: link register

 r15: program counter

Registers

 Depending upon context, registers r13 and r14 can

also be used as GPR

 Any instruction which use r0 can as well be used

with any other GPR (r1-r13)

 Two status registers

 CPSR: Current Program Status Register

 SPSR: Saved Program Status Register

12

Processor Modes

 Processor modes determine

 Which registers are active

 Access right to CPSR registers itself

 Each processor mode is either

 Privileged: full read-write access to the CPSR

 Non-privileged: only read access to the control field of

CPSR but read-write access to the condition flags

Processor Modes

 ARM has seven basic operating modes

 Each mode has access to its own space and a different subset of registers

 Some operations can only be carried out in a privileged mode

Mode Description

Supervisor

(SVC)

Entered on reset and when a Supervisor call

instruction (SVC) is executed

Privileged

modes

FIQ
Entered when a high priority (fast) interrupt is

raised

IRQ Entered when a normal priority interrupt is raised

Abort Used to handle memory access violations

Undef Used to handle undefined instructions

System
Privileged mode using the same registers as User

mode

User
Mode under which most Applications / OS tasks

run

Unprivileged

mode

E
x
ce

p
ti

o
n
 m

o
d
e
s

13

The ARM Register Set

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

User mode

spsr

r13 (sp)

r14 (lr)

IRQ FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr spsr

r13 (sp)

r14 (lr)

Undef

spsr

r13 (sp)

r14 (lr)

Abort

spsr

r13 (sp)

r14 (lr)

SVC

Current mode Banked out registers

ARM has 37 registers, all 32-bits long

A subset of these registers is accessible in each

mode

Note: System mode uses the User mode

register set.

Program Status Registers

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation oVerflowed

 Sticky Overflow flag - Q flag

 Indicates if saturation has occurred

 SIMD Condition code bits – GE[3:0]

 Used by some SIMD instructions

 IF THEN status bits – IT[abcde]

 Controls conditional execution of Thumb
instructions

 T bit

 T = 0: Processor in ARM state

 T = 1: Processor in Thumb state

 J bit

 J = 1: Processor in Jazelle state

 Mode bits

 Specify the processor mode

 Interrupt Disable bits

 I = 1: Disables IRQ

 F = 1: Disables FIQ

 E bit

 E = 0: Data load/store is little endian

 E = 1: Data load/store is bigendian

 A bit

 A = 1: Disable imprecise data aborts

f s x c

27 31 28 6 7 16 23

15

5 4 0 24

J

10 8 9 19

 Q T I F mode N Z C V IT[abc] [de] E A GE[3:0]

14

 When the processor is executing in ARM state:

 All instructions are 32 bits wide

 All instructions must be word aligned

 Therefore the pc value is stored in bits [31:2] with bits [1:0] undefined (as
instruction cannot be halfword or byte aligned)

 When the processor is executing in Thumb state:

 All instructions are 16 bits wide

 All instructions must be halfword aligned

 Therefore the pc value is stored in bits [31:1] with bit [0] undefined (as
instruction cannot be byte aligned)

 When the processor is executing in Jazelle state:

 All instructions are 8 bits wide

 Processor performs a word access to read 4 instructions at once

Program Counter (r15)

Mode Changing

Mode changes by writing directly to CPSR

or by hardware when the processor

responds to exception or interrupt

To return to user mode a special return

instruction is used that instructs the core to

restore the original CPSR and banked

registers

15

ARM Memory Organization

 Can be configured as

Little Endian

Big Endian

 Addresses are for each byte

ARM Instruction Set

16

Instructions

 Instruction process data held in registers

and access memory with load and store

instructions

Classes of instructions

Data processing

Branch instructions

Load-store instructions

Software interrupt instruction

Program status register instructions

Features of ARM Instruction Set

3-address data processing instructions

Conditional execution of every instruction

Load and store multiple registers

Shift, ALU operation in a single instruction

Open instruction set extension through the

co-processor instruction

17

ARM Data Types

Word is 32 bits long

Word can be divided into four 8-bit bytes

ARM addresses can be 32 bit long

Address refers to byte

Can be configured at power-up as either

little- or big-endian mode

Data Processing Instructions

 Consist of :
 Arithmetic: ADD ADC SUB SBC RSB RSC

 Logical: AND ORR EOR BIC

 Comparisons: CMP CMN TST TEQ

 Data movement: MOV MVN

 These instructions only work on registers, NOT memory.

 Syntax:
 <Operation>{<cond>}{S} Rd, Rn, Operand2

 Comparisons set flags only - they do not specify Rd
 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

 Suffix S on data processing instructions updates flags in CPSR

18

Data Processing Instructions

Operands are 32-bit wide

Come from registers of specified as literal in

the instruction itself

Second operand sent to ALU via barrel

shifter

32-bit result placed in register

Long multiply instruction produces 64-bit

result

Move instruction

MOV Rd, N

Rd: destination register

N: can be an immediate value or source

register

Example: MOV r7, r5

MVN Rd, N

Move into Rd not of the 32-bit value from

source

19

Using Barrel Shifter

 Enables shifting 32-bit operand in one of the

source registers left or right by a specific

number of positions within the cycle time of

instruction

 Basic Barrel shifter operations

Shift left, shift right, rotate right

 Facilitate fast multiply, division and increases

code density

 Example: MOV r7, r5, LSL #2

Multiplies content of r5 by 4 and puts result in r7

Arithmetic Instructions

 Implements 32-bit addition and

subtraction

3-operand form

Examples

SUB r0, r1, r2

– Subtract value stored in r2 from that of r1 and store in r0

SUBS r1, r1, #1

– Subtract 1 from r1 and store result in r1 and update Z

and C flags

20

Register, optionally with shift operation

 Shift value can be either be:
 5 bit unsigned integer

 Specified in bottom byte of
another register.

 Used for multiplication by
constant

Immediate value

 8 bit number, with a range of
0-255.
 Rotated right through even

number of positions

 Allows increased range of 32-
bit constants to be loaded
directly into registers

Result

Operand
1

Barrel
Shifter

Operand
2

ALU

Using a Barrel Shifter:The 2nd

Operand

Data Processing Exercise

 1. How would you load the two’s complement
representation of -1 into Register 3 using one instruction?

 2. Implement an ABS (absolute value) function for a
registered value using only two instructions.

 3. Multiply a number by 35, guaranteeing that it executes
in 2 core clock cycles.

21

Data Processing Solutions

 1. MOVN r6, #0

 2. MOVS r7,r7 ; set the flags

 RSBMI r7,r7,#0 ; if neg, r7=0-r7

 3. ADD r9,r8,r8,LSL #2 ; r9=r8*5

 RSB r10,r9,r9,LSL #3 ; r10=r9*7

 No ARM instruction can contain a 32 bit immediate constant

 All ARM instructions are fixed as 32 bits long

 The data processing instruction format has 12 bits available for
operand2

 4 bit rotate value (0-15) is multiplied by two to give range 0-30
in steps of 2

 Rule to remember is

 “8-bits rotated right by an even number of bit positions”

0 7 11 8

immed_8

Shifter

ROR

rot

x2

Quick Quiz:
0xe3a004ff

MOV r0, #???

Immediate constants

22

 There are 2 classes of multiply - producing 32-bit and 64-bit results

 32-bit versions on an ARM7TDMI will execute in 2 - 5 cycles

 MUL r0, r1, r2 ; r0 = r1 * r2

 MLA r0, r1, r2, r3 ; r0 = (r1 * r2) + r3

 64-bit multiply instructions offer both signed and unsigned versions

 For these instruction there are 2 destination registers

 [U|S]MULL r4, r5, r2, r3 ; r5:r4 = r2 * r3

 [U|S]MLAL r4, r5, r2, r3 ; r5:r4 = (r2 * r3) + r5:r4

 Most ARM cores do not offer integer divide instructions

 Division operations will be performed by C library routines or inline shifts

Multiply and Divide

Logical Instructions

Bit wise logical operations on the two

source registers

AND, OR, Ex-OR, bit clear

Example: BIC r0, r1, r2

R2 contains a binary pattern where every binary 1

in r2 clears a corresponding bit location in register

r1

Useful in manipulating status flags and interrupt

masks

23

Compare Instructions

Enables comparison of 32 bit values

Updates CPSR flags but do not affect other

registers

Examples

CMP r0, r9

– Flags set as a result of r0 - r9

TEQ r0, r9

– Flags set as a result r0 ex-or r9

TST r0, r9

– Flags set as a result of r0 & r9

Instruction Set basics

 The ARM Architecture is a Load/Store architecture

 No direct manipulation of memory contents

 Memory must be loaded into the CPU to be modified, then
written back out

 Cores are either in ARM state or Thumb state

 This determines which instruction set is being executed

 An instruction must be executed to switch between states

 The architecture allows programmers and compilation tools
to reduce branching through the use of conditional execution

 Method differs between ARM and Thumb, but the principle is that
most (ARM) or all (Thumb) instructions can be executed
conditionally.

24

Load-Store Instructions

Transfer data between memory and

processor registers

Single register transfer

Data types supported are signed and unsigned

words (32 bits), half-word, bytes

Multiple-register transfer

Transfer multiple registers between memory and

the processor in a single instruction

Swap

Swaps content of a memory location with the

contents of a register

Single Transfer Instructions

25

Single Access Data Transfer

 Use to move data between one or two registers and memory
 LDRD STRD Doubleword

 LDR STR Word

 LDRB STRB Byte

 LDRH STRH Halfword

 LDRSB Signed byte load

 LDRSH Signed halfword load

 Syntax:
 LDR{<size>}{<cond>} Rd, <address>

 STR{<size>}{<cond>} Rd, <address>

 Example:
 LDRB r0, [r1] ; load bottom byte of r0 from the
 ; byte of memory at address in r1

Upper bits zero filled or

sign extended on Load

Memory

Rd

31 0

Single Transfer Instructions

 Load & Store data on a boundary alignment

LDR, LDRH, LDRB

Load (word, half-word, byte)

STR, STRH, STRB

Store (word, half-word, byte)

 Supports different addressing modes

Register indirect: LDR r0, [r1]

Immediate: LDR r0, [r1,#4]

12-bit offset added to the base register

Register operation: LDR r0, [r1,-r2]

Address calculated using base register and another register

26

More Addressing Modes

Scaled

Address is calculated using the base

address register and a barrel shift operation

Pre & Post Indexing

Pre-index with write back: LDR r0, [r1,#4]!

Updates the address base register with new

address

Post index: LDR r0, [r1], #4

Updates the address register after address is

used

Example

Pre-indexing with write back

LDR r0, [r1,#4]!

Before instruction execution

r0 = 0x00000000 r1 = 0x00009000

Mem32[0x00009000] = 0x01010101

Mem32[0x00009004] = 0x02020202

After instruction execution

r0 = 0x02020202

r1 = 0x00009004

27

Multiple Register Transfer

 Load-store multiple instructions transfer multiple

register contents between memory and the

processor in a single instruction

More efficient for moving blocks of memory and

saving and restoring context and stack

 These instructions can increase interrupt

latency

Instruction executions are not interrupted by ARM

Multiple Byte Load-Store

Any subset of current bank of registers

can be transferred to memory or fetched

from memory

LDM

SDM

The base register Rn determines source

or destination address

28

 These instructions move data between multiple registers and memory

 Syntax

 <LDM|STM>{<addressing_mode>}{<cond>} Rb{!}, <register list>

 4 addressing modes

 Increment after/before

 Decrement after/before

 Also

 PUSH/POP, equivalent to STMDB/LDMIA with SP! as base register

 Example

 LDM r10, {r0,r1,r4} ; load registers, using r10 base

 PUSH {r4-r6,pc} ; store registers, using SP base

Multiple Register Data Transfer

(IA)

r1 Increasing

Address

r4

r0

r1

r4

r0

r1

r4

r0 r1

r4

r0

r10

IB DA DB

Base Register (Rb)

Example

Moving a large data block
; R12 points to the start if the source data

; R14 points to the end of the source data

; R13 points to the start of the destination data

Loop LDMIA R12!, {R0-R11} ; load 48 bytes...

 STMIA R13!, {R0-R11} ; ...and store them

 CMP R12, R14 ; check for the end

 BNE Loop ; and loop until done

29

Addressing Modes

 LDMIA|IB|DA|DB ex: LDMIA Rn!, {r1-r3}

 STMIA|IB|DA|DB

Stack Processing

A stack is implemented as a linear data

structure which grows up (ascending) or

down (descending)

Stack pointer hold the address of the

current top of the stack

30

Modes of Stack Operation

ARM multiple register transfer instructions

support

Full ascending: grows up, SP points to the

highest address containing a valid item

Empty ascending: grows up, SP points to the

first empty location above stack

Full descending: grows down, SP points to

the lowest address containing a valid data

Empty descending: grows down, SP points

to the first location below the stack

Some Stack Instructions

Full Ascending

LDMFA: translates to LDMIA (POP)

STMFA: translates to STMIB (PUSH)

SP points to last item in stack

Empty Descending

LDMED: translates to LDMIB (POP)

STMED: translates to STMIA (PUSH)

SP points to first unused location

31

Stack Example

SWAP Instruction

Special case of load store instruction

Swap instructions

SWP: swap a word between memory and

register

SWPB: swap a byte between memory and

register

Useful for implementing synchronization

primitives like semaphore

32

 ARM instructions can be made to execute conditionally by postfixing them with the

appropriate condition code field.

 This improves code density and performance by reducing the number of forward branch

instructions.

 CMP r3,#0 CMP r3,#0

 BEQ skip ADDNE r0,r1,r2

 ADD r0,r1,r2

skip

 By default, data processing instructions do not affect the condition code flags but the flags

can be optionally set by using “S”. CMP does not need “S”.

 loop

 …

 SUBS r1,r1,#1

 BNE loop

 if Z flag clear then branch

 decrement r1 and set flags

Conditional Execution and Flags

Condition Codes

Not equal

Unsigned higher or same

Unsigned lower

Minus

Equal

Overflow

No overflow

Unsigned higher

Unsigned lower or same

Positive or Zero

Less than

Greater than

Less than or equal

Always

Greater or equal

EQ

NE

CS/HS

CC/LO

PL

VS

HI

LS

GE

LT

GT

LE

AL

MI

VC

Suffix Description

Z=0

C=1

C=0

Z=1

Flags tested

N=1

N=0

V=1

V=0

C=1 & Z=0

C=0 or Z=1

N=V

N!=V

Z=0 & N=V

Z=1 or N=!V

 The possible condition codes are listed below

 Note AL is the default and does not need to be specified

33

Conditional execution examples

if (r0 == 0)

{

 r1 = r1 + 1;

}

else

{

 r2 = r2 + 1;

}

C source code

 5 instructions

 5 words

 5 or 6 cycles

 3 instructions

 3 words

 3 cycles

 CMP r0, #0

 BNE else

 ADD r1, r1, #1

 B end

else

 ADD r2, r2, #1

end

 ...

ARM instructions

 unconditional

 CMP r0, #0

 ADDEQ r1, r1, #1

 ADDNE r2, r2, #1

 ...

conditional

 Branch : B{<cond>} label

 Branch with Link : BL{<cond>} subroutine_label

 The processor core shifts the offset field left by 2 positions, sign-extends it and
adds it to the PC

 ± 32 Mbyte range

 How to perform longer branches?

28 31 24 0

 Cond 1 0 1 L Offset

Condition field

Link bit 0 = Branch
 1 = Branch with link

23 25 27

Branch instructions

34

Branch instruction

 Branch instruction: B label

 Example: B forward

 Address label is stored in the instruction as a signed pc-

relative offset

 Conditional Branch: B<cond> label

 Example: BNE loop

 Branch has a condition associated with it and executed

if condition codes have the correct value

Example: Block Memory Copy

Loop LDMIA r9!, {r0-r7}

 STMIA r10!, {r0-r7}

 CMP r9, r11

 BNE Loop

 r9 points to source of data, r10 points to start of

destination data, r11 points to end of the source

35

Branch & Link Instruction

 Perform a branch, save the address following the branch in the

link register, r14

 Example: BL subroutine

 For nested subroutine, push r14 and some work registers

required to be saved onto a stack in memory

 BL Sub1

 …

Sub1 STMFD R13!,{R0-R2,R14}

 …

 BL Sub2

 LDMFD R13!,{R0-R2,PC}

Subroutine Return Instructions

 No specific instructions

 Example

sub:

…

MOV PC, r14

 When return address has been pushed to stack

sub:

 …

 LDMFD r13!, {r0-r12,PC}

36

Register Usage

r8

r9/sb

r10/sl

r11

r12

r13/sp

r14/lr

r15/pc

r0

r1

r2

r3

r4

r5

r6

r7 Register variables

Must be preserved

Arguments into function

Result(s) from function

otherwise corruptible

(Additional parameters

passed on stack)

Scratch register

(corruptible)

Stack Pointer

Link Register

Program Counter

The compiler has a set of rules known as a Procedure

Call Standard that determine how to pass parameters

to a function (see AAPCS)

CPSR flags may be corrupted by function call.

Assembler code which links with compiled code must

follow the AAPCS at external interfaces

The AAPCS is part of the new ABI for the ARM

Architecture

Register

- Stack base

- Stack limit if software stack checking selected

- R14 can be used as a temporary once value stacked

- SP should always be 8-byte (2 word) aligned

:

BL func2

:

:

BX lr

func1 func2
void func1 (void)

{

 :

 func2();

 :

}

Subroutines

 Implementing a conventional subroutine call requires two steps

 Store the return address

 Branch to the address of the required subroutine

 These steps are carried out in one instruction, BL

 The return address is stored in the link register (lr/r14)

 Branch to an address (range dependent on instruction set and width)

 Return is by branching to the address in lr

37

Supervisor Call (SVC)

SVC{<cond>} <SVC number>

 Causes an SVC exception

 The SVC handler can examine the SVC number to decide what

operation has been requested

 But the core ignores the SVC number

 By using the SVC mechanism, an operating system can implement a set

of privileged operations (system calls) which applications running in

user mode can request

 Thumb version is unconditional

Vector Table

Exception Handling

 When an exception occurs, the core…
 Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits
 Change to ARM state (if appropriate)
 Change to exception mode

 Disable interrupts (if appropriate)

 Stores the return address in LR_<mode>

 Sets PC to vector address

 To return, exception handler needs to…
 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

 Cores can enter ARM state or Thumb state when

 taking an exception
 Controlled through settings in CP15

 Note that v7-M and v6-M exception model is different

Vector table can also be at

0xFFFF0000 on most cores

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Supervisor Call

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

38

Exception handling process

1. Save processor status

 Copies CPSR into SPSR_<mode>

 Stores the return address in LR_<mode>

 Adjusts LR based on exception type

2. Change processor status for exception

 Mode field bits

 ARM or Thumb state

 Interrupt disable bits (if appropriate)

 Sets PC to vector address

3. Execute exception handler

 <users code>

4. Return to main application

 Restore CPSR from SPSR_<mode>

 Restore PC from LR_<mode>

 1 and 2 performed automatically by the core

 3 and 4 responsibility of software

Exception

handler

Main

Application

What is NEON?

 NEON is a wide SIMD data processing architecture

 Extension of the ARM instruction set (v7-A)

 32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)

 NEON instructions perform “Packed SIMD” processing

 Registers are considered as vectors of elements of the same data type

 Data types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec. float

 Instructions usually perform the same operation in all lanes

Dn

Dm

Dd

Lane

Source

Registers

Source

Registers

Operation

Destination

Register

Elements Elements Elements

39

NEON Coprocessor registers

 NEON has a 256-byte register file

 Separate from the core registers (r0-r15)

 Extension to the VFPv2 register file (VFPv3)

 Two different views of the NEON registers

 32 x 64-bit registers (D0-D31)

 16 x 128-bit registers (Q0-Q15)

 Enables register trade-offs

 Vector length can be variable

 Different registers available

Q0

Q1

Q15

:

D0

D1

D2

D3

:

D30

D31

D0

D1

D2

D3

:

NEON vectorizing example

 How does the compiler perform vectorization?

void add_int(int * __restrict pa,

 int * __restrict pb,

 unsigned int n, int x)

{

 unsigned int i;

 for(i = 0; i < (n & ~3); i++)

 pa[i] = pb[i] + x;

} 1. Analyze each loop:

 Are pointer accesses safe for

vectorization?

 What data types are being used?

How do they map onto NEON vector

registers?

 Number of loop iterations

void add_int(int *pa, int *pb,

 unsigned n, int x)

{

 unsigned int i;

 for (i = ((n & ~3) >> 2); i; i--)

 {

 *(pa + 0) = *(pb + 0) + x;

 *(pa + 1) = *(pb + 1) + x;

 *(pa + 2) = *(pb + 2) + x;

 *(pa + 3) = *(pb + 3) + x;

 pa += 4; pb += 4;

 }

}

2. Unroll the loop to the appropriate number of

iterations, and perform other transformations

like pointerization

3. Map each unrolled operation onto a

NEON vector lane, and generate

corresponding NEON instructions

+ + + +

pb

x

pa

+

0 127

40

 Thumb is a 16-bit instruction set

 Optimised for code density from C code (~65% of ARM code size)

 Improved performance from narrow memory

 Subset of the functionality of the ARM instruction set

 Core has additional execution state - Thumb

 Switch between ARM and Thumb using BX instruction

0 1

5

31 0 ADDS r2,r2,#1

ADD r2,#1

32-bit ARM Instruction

16-bit Thumb

Instruction

For most instructions generated by compiler:

 Conditional execution is not used

 Source and destination registers identical

 Only Low registers used

 Constants are of limited size

 Inline barrel shifter not used

Thumb

79

