
Data-Level Parallelism in Vector 

and  SIMD Architectures 



Flynn Taxonomy of Computer 

Architectures (1972) 

It is  based on parallelism of instruction streams and data streams 

 SISD  

 single instruction stream, single data stream • microprocessors 

 SIMD 

 single instruction stream, multiple data streams 

 vector processors; principle behind multimedia extensions 

  graphic processing units (GPUs) 

 MISD 

 multiple instruction streams, single data stream 

 not commercial processors (yet) 

 MIMD 

 multiple instruction streams, multiple data streams 

 each processor fetches its own instruction and operates on its own data 



SISD architecture 

 Le SISD architectures  sono quelle classiche nelle 

quali non è previsto nessun grado di parallelismo né 

tra le istruzioni né tra i dati. 



MISD architecture 

 MISD è una architettura abbastanza inusuale nella 

quale più istruzioni concorrenti operano sullo stesso 

flusso di dati. 

 Un campo di applicazione possono ad esempio 

essere i sistemi ridondanti, come i sistemi di controllo 

degli aeroplani nei quali se uno dei processori si 

guasta l'elaborazione dei dati deve continuare 

ugualmente. 



SIMD architecture 

 This form of parallel processing has existed since the 

1960s 

 The idea is rather than executing array operations by 

loop, we execute all of the array operations in parallel on 

different processing elements (ALUs) 

 we convert  

for(i=0;i<n;i++)  

a[i]++;  

into a single operation, say  

 A=A+1 



SIMD architecture 

 Not only do we get a speedup from the parallelism, we 

also get to remove the looping operation (incrementing i, 

the comparison and conditional branch) 

 These technologies are often applied  in the field of 

audio / video codecs and video games. 

 For example, if  a polygon is moved, it is necessary to translate 

all its vertices by adding to each of  them the same value. 

 



MIMD 

 Solitamente nella categoria MIMD si fanno rientrare 

i sistemi distribuiti, nei quali più processori autonomi 

operano in parallelo su dati differenti. 



SIMD vs MIMD 

 SIMD architectures can exploit significant data-level 
parallelism for: 

 matrix-oriented scientific computing 

 media-oriented image and sound processors 

 

 SIMD is more energy efficient than MIMD 

 Only needs to fetch one instruction per data operation 

 Makes SIMD attractive for personal mobile devices 

 

 SIMD allows programmer to continue to think 
sequentially 



SIMD parallelism 

 Vector architectures 

 Multimedia SIMD instruction set extensions 

 Graphics Processor Units (GPUs) 

 



Potential speedup via parallelism over time for 

x86 computers.  

 For x86 processors: 

 Expect two additional 
cores per chip per year 

 SIMD width to double 
every four years 

 Potential speedup from 
SIMD to be twice that 
from MIMD! 

 



Vector Architectures 

 Basic idea: 

 Read sets of data elements into “vector registers” 

 Operate on those registers 

 Disperse the results back into memory 

 

 Registers are controlled by compiler 

 Used to hide memory latency 

 Leverage memory bandwidth 



Vector Architectures 

 provide high-level operations that work on vectors (linear 
arrays of numbers) 
 e.g. add two 64-element vectors in 1 step, instead of using a loop 

 reduce IF, ID bandwidth 
 instruction represent many operations 

 reduce HW complexity to support ILP 
 the computation on each element does not depend on the others 

 check hazards once for vector operand 

 since a loop is replaced by an instruction, loop branch, control hazards 
disappear 

 improve memory access 

 deeply-pipelined vector load/store unit a single access is initiated for the 
entire vector (bandwidth of one word per clock cycle after initial latency) 



VMIPS 

 Example architecture:  VMIPS 
 Loosely based on Cray-1 
 Vector registers 

 Each register holds a 64-element, 64 bits/element vector 
 Register file has 16 read ports and 8 write ports 

 Vector functional units 
 Fully pipelined 
 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 
 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 
 32 floating-point registers 



Structure of VMIPS Vector Processor 

-The VMIPS processor has a scalar 

architecture just like MIPS. 

-There are also eight 64-element  

 vector registers, and all the functional 

units  are vector functional units.  

 

The figure shows vector units for logical 

and integer operations so that 

VMIPS looks like a classic vector 

processor  (Cray 1).  

The vector and scalar registers  have a 

significant number of read  and write 

ports to allow multiple simultaneous 

vector operations. Crossbar switches (thick 

gray lines) connects these ports to the 

inputs and outputs of the vector functional 

units. 



VMIPS Instruction Set 

 Aside from the ordinary MIPS instructions (scalar 

operations), we enhance MIPS with the following: 

 LV, SV – load vector, store vector 

 LV V1, R1 – load vector register V1 with the data starting at the 

memory location stored in R1 

  for (i=0;i<64;i++) 

    V1(i)= MEM(R1+i*8); 

 

 also LVI/SVI for using indexed addressing mode, and LVWS and 

SVWS for using scaled addressing mode 

 



VMIPS Instruction Set 

 ADDVV.D V1, V2, V3 (V1  V2 + V3) 

  for (i=0;i<64;i++) 

  V1(i)= V2(i) + V3(i); 

 

 

 ADDVS.D V1, V2, F0 (scalar addition) 

 for (i=0;i<64;i++) 

  V1(i)= V2(i) + F0; 

 

 similarly for SUB, MUL and DIV 

 



VMIPS Instruction Set 

 S--VV.D V1, V2 and S--VS.D V1, F0 to compare 

pairwise elements in V1 and V2 or V1 and F0 

 -- is one of EQ, NE, GT, LT, GE, LE 

 result of comparison is a set of boolean values placed into 

the bit vector register VM which we can then use to 

implement if statements 

 

 Example   SEQVV.D V1,V2 

 for (i=0;i<64;i++) 

 if(V1(i)== V2(i))  

     VM(i)= 1 

 else VM(i) = 0; 

 

 



VMIPS Instruction Set 

 POP R1, VM – count number of 1s in the VM and store 

in R1 

 

count=0; 

for (i=0;i<64;i++) 

  if (VM(i)) count++; 

Reg(R1)=count; 

 

 

 this is only a partial list of instructions, and only the FP 

operations, missing are any integer based operations 

 



VMPIS instruction Set 

 



VMPIS instruction Set 



Example 

 Let’s look at a typical vector processing problem, computing Y = a*X + Y  

 Where X & Y are vectors and a is a scalar (e.g., y[i]=y[i]+a*x[i]) 

 The MIPS code is on the left and the VMIPS code is on the right 

 L.D F0, a 

 DADDI R4, Rx, #512 

Loop: L.D F2, 0(Rx) 

 MUL.D F2, F2, F0 

 L.D F4, 0(Ry) 

 ADD.D F4, F4, F2 

 S.D F4, 0(Ry) 

 DADDI Rx, Rx, #8 

 DADDI Ry, Ry, #8 

 DSUB R20, R4, Rx 

 BNEZ R20, Loop 

L.D  F0, a 

LV  V1, Rx 

MULVS.D V2, V1, F0 

LV  V3, Ry 

ADDVV.D V4, V2, V3 

SV  V4, Ry 

In MIPS, we execute 2+9*64=578 instructions 

whereas in VMIPS, only 6 (there are 64 

elements in the array to process, each is 8 

bytes long) and there are no RAW hazards or 

control hazards to deal with 



VMIPS Instructions 

 ADDVV.D:  add two vectors 

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 

 

 Example:  DAXPY 

L.D   F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D  V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV  V4,V2,V3 ; add 

SV   Ry,V4  ; store the result 

 Requires 6 instructions vs. 578 for MIPS 



Vector Execution Time 

 Execution time depends on three factors: 

 Length of operand vectors 

 Structural hazards 

 Data dependencies 

 

 VMIPS functional units consume one element per 
clock cycle 

 Execution time is approximately the vector length 

 



Vector Chaining 

 Vector version of register bypassing 

 Chaining allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 Results from the first functional unit are forwarded to the second unit  

Memory 
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Vector Chaining Advantage 

• With chaining, can start dependent instruction as soon as 
first result appears 

Load 

Mul 

Add 

Load 

Mul 

Add Time 

• Without chaining, must wait for last element of result to be 
written before starting dependent instruction 



Convoy 

 A convoy is a set of sequential vector operations 

that can be issued together without a structural 

hazard 

 Because we are operating on vectors in a pipeline, the 

execution of these operations can be overlapped 

 e.g., L.V V1, Rx followed by ADDVV.D V3, V1, V2 would 

allow us to retrieve the first element of V1 and then start the 

addition while retrieving the second element of V1 

V1(0) V1(1) V1(2) 

 

V1(3) V1(4) 

 
L.V V1, Rx  

ADDVV.D V3, V1, V2  V1(0) V1(1) V1(2) 

 

V1(3) 



Chimes 

 A chime is the amount of time it takes to execute a 

convoy 

 We will assume that there are no stalls in executing the 

convoy, so the chime will take n + x – 1 cycles where x is the 

length of the convoy and n is the number of data in the 

vector 

 A program of m convoys will take m chimes, or m * (n + x – 

1) cycles (again, assuming no stalls) 

 The chime time ignores pipeline overhead, and so architects 

prefer to dicuss performance in chimes 



Example 

LV   V1,Rx   ;load vector X 

MULVS.D  V2,V1,F0   ;vector-scalar multiply 

LV   V3,Ry   ;load vector Y 

ADDVV.D  V4,V2,V3  ;add two vectors 

SV   Ry,V4   ;store the sum 

 

Convoys: 

1  LV  MULVS.D 

2  LV  ADDVV.D 

3  SV 

 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 



Challenges 

 Start up time 

 Latency of vector functional unit 

 Assume the same as Cray-1 

 Floating-point add => 6 clock cycles 

 Floating-point multiply => 7 clock cycles 

 Floating-point divide => 20 clock cycles 

 Vector load => 12 clock cycles 



Challenges 

 How can a vector processor executes > 1 element per clock 

cycle ? 

 How does a vector processor handle  Non-64 wide vectors ? 

 What happens when there is a IF statements in vector code ? 

 Memory system optimizations to support vector processors 

 How does a vector processor handle Multiple dimensional 

matrices ? 

 How does a vector processor handle Sparse matrices ? 

 Programming a vector computer 

 



Multiple Lanes 

 Element n of vector register A is “hardwired” to element n of 

vector register B 

 Allows for multiple hardware lanes 



Multiple Lanes 

 Each line contains a portion of vector register file and one execution 

pipeline from each vector functional unit 

 



Vector Length Register 

 Vector length not known at compile time? 

for ( i =0; i<n; i++) 

 Y[i]=Y[i]+a*X[i]; 

   n is know at run time 

 Use Vector Length Register (VLR) 

 VLR cannot be greater than the size of the vector registers, the 

maximum vector lenght (MVL) 

 MVL determines the number of data in a vector 

 



Vector Length Register 

 Use strip mining for vectors over the maximum length: 

low = 0; 

VL = (n % MVL); /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ; /*main operation*/ 

 low = low + VL; /*start of next vector*/ 

 VL = MVL; /*reset the length to maximum vector length*/ 

} 

 



Vector Mask Registers 

 Consider: 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

  X[i] = X[i] – Y[i]; 

 

 This loop cannot be normally vectorized 

 Iteration can be vectorized for items for which X[i] != 0 

 Use vector mask register (VM) to “disable” elements: 

 SNEVS.D V1,F0 

 This instruction sets VM(i) to 1 if V1(i)!=F0 

 

 

 When VM register is enabled, vector instructions operate only on the 
elements with VM(i) equal to one 

 Clearing VM, using CVM, vector instructions operate on all elements 



Vector Mask Registers 

 LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 

 

GFLOPS rate decreases! 



Memory Banks 

 Memory system must be designed to support high bandwidth 

for vector loads and stores 

 Spread accesses across multiple banks 

 Many vector processor support multiple load/store  per cycle 

 Control bank addresses independently 

 Load or store non sequential words ( for example access to columns of 

data) 

 Support multiple vector processors sharing the same memory 

 Example: 

 32 processors, each generating 4 loads and 2 stores/cycle 

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 

 How many memory banks needed? 

 32*(4+2)*7=1344 



Stride 

 Consider: 

   for (j = 0; j < 64; j=j+1)  

  A[i][j] = B[k][j] * D[j][m]; 

  } 

 

 

LV  V1, RB  ; RB contains address of row B[k]    

LVWS    V2, (RD,R2) ; RD contains address of D[0][m] and R2 contains row size 

MULTW  V3,V1,V2 

SW RA, V3  ; RA contains address of row B[k] 

 

 Must vectorize multiplication of rows of B with columns of D 

 Use non-unit stride 

 Bank conflict (stall) occurs when the same bank is hit faster than bank busy time: 

 #banks / GCD(stride,#banks) < bank busy time 

column[m] 

row[i] 
row[k] 

row size 



Stride 

 8 memory banks, bank busy time of 6 clock, totale memory 

latency of 12 cycle 

 How long will it take to complete 64-element vector load with 

a stride of 1 and stride 32 ? 

 

 Stride 1:    12+64 = 76 cycles 

 Stride 32:  12+1+6*63= 391 cycles 



Scatter-Gather 

 LVI Va, (R1+V2) 

 Allow programs with sparse matrix to execute  in 

vectore mode 

 

for (i=0;i<64;i++) 

  Va(i) = Mem(R1+V2(i)); 



Scatter-Gather 

 Consider: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]]; 

 

 Use index vector: 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm   ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 



Programming Vec. Architectures 

 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 

 



SIMD Extensions 

 Media applications operate on data types narrower than the 

native word size 

 Example:  disconnect carry chains to “partition” adder 

 

 Limitations, compared to vector instructions: 

 Number of data operands encoded into op code 

 No sophisticated addressing modes (strided, scatter-

gather) 

 No mask registers 



Esempi di estensioni di tipo SIMD 

 Le più diffuse sono: 

 Apple/IBM/Freescale AltiVec 

 Intel MMX/SSE/SSE2/SSE3/SSSE3/AVX 

 AMD 3DNow! 

 SPARC VIS 

 ARM Neon/VFP 

 MIPS MDMX/MIPS-3D 



SIMD Implementations 

 Implementations: 

 Intel MMX (1996) 

 Eight 8-bit integer ops or four 16-bit integer ops 

 Streaming SIMD Extensions (SSE) (1999) 

 Eight 16-bit integer ops 

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

 Advanced Vector Extensions (2010) 

 Four 64-bit integer/fp ops 

 

 Operands must be consecutive and aligned memory 
locations 

 


