
Data-Level Parallelism in Vector

and SIMD Architectures

Flynn Taxonomy of Computer

Architectures (1972)

It is based on parallelism of instruction streams and data streams

 SISD

 single instruction stream, single data stream • microprocessors

 SIMD

 single instruction stream, multiple data streams

 vector processors; principle behind multimedia extensions

 graphic processing units (GPUs)

 MISD

 multiple instruction streams, single data stream

 not commercial processors (yet)

 MIMD

 multiple instruction streams, multiple data streams

 each processor fetches its own instruction and operates on its own data

SISD architecture

 Le SISD architectures sono quelle classiche nelle

quali non è previsto nessun grado di parallelismo né

tra le istruzioni né tra i dati.

MISD architecture

 MISD è una architettura abbastanza inusuale nella

quale più istruzioni concorrenti operano sullo stesso

flusso di dati.

 Un campo di applicazione possono ad esempio

essere i sistemi ridondanti, come i sistemi di controllo

degli aeroplani nei quali se uno dei processori si

guasta l'elaborazione dei dati deve continuare

ugualmente.

SIMD architecture

 This form of parallel processing has existed since the

1960s

 The idea is rather than executing array operations by

loop, we execute all of the array operations in parallel on

different processing elements (ALUs)

 we convert

for(i=0;i<n;i++)

a[i]++;

into a single operation, say

 A=A+1

SIMD architecture

 Not only do we get a speedup from the parallelism, we

also get to remove the looping operation (incrementing i,

the comparison and conditional branch)

 These technologies are often applied in the field of

audio / video codecs and video games.

 For example, if a polygon is moved, it is necessary to translate

all its vertices by adding to each of them the same value.

MIMD

 Solitamente nella categoria MIMD si fanno rientrare

i sistemi distribuiti, nei quali più processori autonomi

operano in parallelo su dati differenti.

SIMD vs MIMD

 SIMD architectures can exploit significant data-level
parallelism for:

 matrix-oriented scientific computing

 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD

 Only needs to fetch one instruction per data operation

 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

SIMD parallelism

 Vector architectures

 Multimedia SIMD instruction set extensions

 Graphics Processor Units (GPUs)

Potential speedup via parallelism over time for

x86 computers.

 For x86 processors:

 Expect two additional
cores per chip per year

 SIMD width to double
every four years

 Potential speedup from
SIMD to be twice that
from MIMD!

Vector Architectures

 Basic idea:

 Read sets of data elements into “vector registers”

 Operate on those registers

 Disperse the results back into memory

 Registers are controlled by compiler

 Used to hide memory latency

 Leverage memory bandwidth

Vector Architectures

 provide high-level operations that work on vectors (linear
arrays of numbers)
 e.g. add two 64-element vectors in 1 step, instead of using a loop

 reduce IF, ID bandwidth
 instruction represent many operations

 reduce HW complexity to support ILP
 the computation on each element does not depend on the others

 check hazards once for vector operand

 since a loop is replaced by an instruction, loop branch, control hazards
disappear

 improve memory access

 deeply-pipelined vector load/store unit a single access is initiated for the
entire vector (bandwidth of one word per clock cycle after initial latency)

VMIPS

 Example architecture: VMIPS
 Loosely based on Cray-1
 Vector registers

 Each register holds a 64-element, 64 bits/element vector
 Register file has 16 read ports and 8 write ports

 Vector functional units
 Fully pipelined
 Data and control hazards are detected

 Vector load-store unit
 Fully pipelined
 One word per clock cycle after initial latency

 Scalar registers
 32 general-purpose registers
 32 floating-point registers

Structure of VMIPS Vector Processor

-The VMIPS processor has a scalar

architecture just like MIPS.

-There are also eight 64-element

 vector registers, and all the functional

units are vector functional units.

The figure shows vector units for logical

and integer operations so that

VMIPS looks like a classic vector

processor (Cray 1).

The vector and scalar registers have a

significant number of read and write

ports to allow multiple simultaneous

vector operations. Crossbar switches (thick

gray lines) connects these ports to the

inputs and outputs of the vector functional

units.

VMIPS Instruction Set

 Aside from the ordinary MIPS instructions (scalar

operations), we enhance MIPS with the following:

 LV, SV – load vector, store vector

 LV V1, R1 – load vector register V1 with the data starting at the

memory location stored in R1

 for (i=0;i<64;i++)

 V1(i)= MEM(R1+i*8);

 also LVI/SVI for using indexed addressing mode, and LVWS and

SVWS for using scaled addressing mode

VMIPS Instruction Set

 ADDVV.D V1, V2, V3 (V1 V2 + V3)

 for (i=0;i<64;i++)

 V1(i)= V2(i) + V3(i);

 ADDVS.D V1, V2, F0 (scalar addition)

 for (i=0;i<64;i++)

 V1(i)= V2(i) + F0;

 similarly for SUB, MUL and DIV

VMIPS Instruction Set

 S--VV.D V1, V2 and S--VS.D V1, F0 to compare

pairwise elements in V1 and V2 or V1 and F0

 -- is one of EQ, NE, GT, LT, GE, LE

 result of comparison is a set of boolean values placed into

the bit vector register VM which we can then use to

implement if statements

 Example SEQVV.D V1,V2

 for (i=0;i<64;i++)

 if(V1(i)== V2(i))

 VM(i)= 1

 else VM(i) = 0;

VMIPS Instruction Set

 POP R1, VM – count number of 1s in the VM and store

in R1

count=0;

for (i=0;i<64;i++)

 if (VM(i)) count++;

Reg(R1)=count;

 this is only a partial list of instructions, and only the FP

operations, missing are any integer based operations

VMPIS instruction Set

VMPIS instruction Set

Example

 Let’s look at a typical vector processing problem, computing Y = a*X + Y

 Where X & Y are vectors and a is a scalar (e.g., y[i]=y[i]+a*x[i])

 The MIPS code is on the left and the VMIPS code is on the right

 L.D F0, a

 DADDI R4, Rx, #512

Loop: L.D F2, 0(Rx)

 MUL.D F2, F2, F0

 L.D F4, 0(Ry)

 ADD.D F4, F4, F2

 S.D F4, 0(Ry)

 DADDI Rx, Rx, #8

 DADDI Ry, Ry, #8

 DSUB R20, R4, Rx

 BNEZ R20, Loop

L.D F0, a

LV V1, Rx

MULVS.D V2, V1, F0

LV V3, Ry

ADDVV.D V4, V2, V3

SV V4, Ry

In MIPS, we execute 2+9*64=578 instructions

whereas in VMIPS, only 6 (there are 64

elements in the array to process, each is 8

bytes long) and there are no RAW hazards or

control hazards to deal with

VMIPS Instructions

 ADDVV.D: add two vectors

 ADDVS.D: add vector to a scalar

 LV/SV: vector load and vector store from address

 Example: DAXPY

L.D F0,a ; load scalar a

LV V1,Rx ; load vector X

MULVS.D V2,V1,F0 ; vector-scalar multiply

LV V3,Ry ; load vector Y

ADDVV V4,V2,V3 ; add

SV Ry,V4 ; store the result

 Requires 6 instructions vs. 578 for MIPS

Vector Execution Time

 Execution time depends on three factors:

 Length of operand vectors

 Structural hazards

 Data dependencies

 VMIPS functional units consume one element per
clock cycle

 Execution time is approximately the vector length

Vector Chaining

 Vector version of register bypassing

 Chaining allows a vector operation to start as soon as the individual

elements of its vector source operand become available

 Results from the first functional unit are forwarded to the second unit

Memory

V

1

Load

Unit
Mult.

V

2

V

3

Chain

Add

V

4

V

5

Chain

LV v1

MULV v3,v1,v2

ADDV v5, v3, v4

Vector Chaining Advantage

• With chaining, can start dependent instruction as soon as
first result appears

Load

Mul

Add

Load

Mul

Add Time

• Without chaining, must wait for last element of result to be
written before starting dependent instruction

Convoy

 A convoy is a set of sequential vector operations

that can be issued together without a structural

hazard

 Because we are operating on vectors in a pipeline, the

execution of these operations can be overlapped

 e.g., L.V V1, Rx followed by ADDVV.D V3, V1, V2 would

allow us to retrieve the first element of V1 and then start the

addition while retrieving the second element of V1

V1(0) V1(1) V1(2)

V1(3) V1(4)

L.V V1, Rx

ADDVV.D V3, V1, V2 V1(0) V1(1) V1(2)

V1(3)

Chimes

 A chime is the amount of time it takes to execute a

convoy

 We will assume that there are no stalls in executing the

convoy, so the chime will take n + x – 1 cycles where x is the

length of the convoy and n is the number of data in the

vector

 A program of m convoys will take m chimes, or m * (n + x –

1) cycles (again, assuming no stalls)

 The chime time ignores pipeline overhead, and so architects

prefer to dicuss performance in chimes

Example

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D

2 LV ADDVV.D

3 SV

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5

For 64 element vectors, requires 64 x 3 = 192 clock cycles

Challenges

 Start up time

 Latency of vector functional unit

 Assume the same as Cray-1

 Floating-point add => 6 clock cycles

 Floating-point multiply => 7 clock cycles

 Floating-point divide => 20 clock cycles

 Vector load => 12 clock cycles

Challenges

 How can a vector processor executes > 1 element per clock

cycle ?

 How does a vector processor handle Non-64 wide vectors ?

 What happens when there is a IF statements in vector code ?

 Memory system optimizations to support vector processors

 How does a vector processor handle Multiple dimensional

matrices ?

 How does a vector processor handle Sparse matrices ?

 Programming a vector computer

Multiple Lanes

 Element n of vector register A is “hardwired” to element n of

vector register B

 Allows for multiple hardware lanes

Multiple Lanes

 Each line contains a portion of vector register file and one execution

pipeline from each vector functional unit

Vector Length Register

 Vector length not known at compile time?

for (i =0; i<n; i++)

 Y[i]=Y[i]+a*X[i];

 n is know at run time

 Use Vector Length Register (VLR)

 VLR cannot be greater than the size of the vector registers, the

maximum vector lenght (MVL)

 MVL determines the number of data in a vector

Vector Length Register

 Use strip mining for vectors over the maximum length:

low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

 for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

 Y[i] = a * X[i] + Y[i] ; /*main operation*/

 low = low + VL; /*start of next vector*/

 VL = MVL; /*reset the length to maximum vector length*/

}

Vector Mask Registers

 Consider:

 for (i = 0; i < 64; i=i+1)

 if (X[i] != 0)

 X[i] = X[i] – Y[i];

 This loop cannot be normally vectorized

 Iteration can be vectorized for items for which X[i] != 0

 Use vector mask register (VM) to “disable” elements:

 SNEVS.D V1,F0

 This instruction sets VM(i) to 1 if V1(i)!=F0

 When VM register is enabled, vector instructions operate only on the
elements with VM(i) equal to one

 Clearing VM, using CVM, vector instructions operate on all elements

Vector Mask Registers

 LV V1,Rx ;load vector X into V1

 LV V2,Ry ;load vector Y

 L.D F0,#0 ;load FP zero into F0

 SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

 SUBVV.D V1,V1,V2 ;subtract under vector mask

 SV Rx,V1 ;store the result in X

GFLOPS rate decreases!

Memory Banks

 Memory system must be designed to support high bandwidth

for vector loads and stores

 Spread accesses across multiple banks

 Many vector processor support multiple load/store per cycle

 Control bank addresses independently

 Load or store non sequential words (for example access to columns of

data)

 Support multiple vector processors sharing the same memory

 Example:

 32 processors, each generating 4 loads and 2 stores/cycle

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns

 How many memory banks needed?

 32*(4+2)*7=1344

Stride

 Consider:

 for (j = 0; j < 64; j=j+1)

 A[i][j] = B[k][j] * D[j][m];

 }

LV V1, RB ; RB contains address of row B[k]

LVWS V2, (RD,R2) ; RD contains address of D[0][m] and R2 contains row size

MULTW V3,V1,V2

SW RA, V3 ; RA contains address of row B[k]

 Must vectorize multiplication of rows of B with columns of D

 Use non-unit stride

 Bank conflict (stall) occurs when the same bank is hit faster than bank busy time:

 #banks / GCD(stride,#banks) < bank busy time

column[m]

row[i]
row[k]

row size

Stride

 8 memory banks, bank busy time of 6 clock, totale memory

latency of 12 cycle

 How long will it take to complete 64-element vector load with

a stride of 1 and stride 32 ?

 Stride 1: 12+64 = 76 cycles

 Stride 32: 12+1+6*63= 391 cycles

Scatter-Gather

 LVI Va, (R1+V2)

 Allow programs with sparse matrix to execute in

vectore mode

for (i=0;i<64;i++)

 Va(i) = Mem(R1+V2(i));

Scatter-Gather

 Consider:

 for (i = 0; i < n; i=i+1)

 A[K[i]] = A[K[i]] + C[M[i]];

 Use index vector:

 LV Vk, Rk ;load K

 LVI Va, (Ra+Vk) ;load A[K[]]

 LV Vm, Rm ;load M

 LVI Vc, (Rc+Vm) ;load C[M[]]

 ADDVV.D Va, Va, Vc ;add them

 SVI (Ra+Vk), Va ;store A[K[]]

Programming Vec. Architectures

 Compilers can provide feedback to programmers

 Programmers can provide hints to compiler

SIMD Extensions

 Media applications operate on data types narrower than the

native word size

 Example: disconnect carry chains to “partition” adder

 Limitations, compared to vector instructions:

 Number of data operands encoded into op code

 No sophisticated addressing modes (strided, scatter-

gather)

 No mask registers

Esempi di estensioni di tipo SIMD

 Le più diffuse sono:

 Apple/IBM/Freescale AltiVec

 Intel MMX/SSE/SSE2/SSE3/SSSE3/AVX

 AMD 3DNow!

 SPARC VIS

 ARM Neon/VFP

 MIPS MDMX/MIPS-3D

SIMD Implementations

 Implementations:

 Intel MMX (1996)

 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)

 Eight 16-bit integer ops

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions (2010)

 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory
locations

