
CSCE430/830

Pipeline: Exceptions

Portions of these slides are derived from:

Dave Patterson © UCB

CSCE430/830

Exceptions

 Exceptions definition: “unexpected change in

control flow”

 Another form of control hazard.

For example:

 add R1, R2, R1; causing an arithmetic overflow

 sw R3, 400(R1);

 add R5, R1, R2;

 Invalid r1 contaminates other registers or memory locations!

CSCE430/830

Types of Exceptions

CSCE430/830

Exception classification

 Synchronous vs Asynchronous - If the event occurs at the same

place every time the program is executed with the same

data and memory allocation, the event is synchronous.

Otherwise asynchronous.

 Except for hardware malfunctions, asynchronous events are caused

by devices external to the CPU and memory.

 Asynchronous events usually are easier to handled

because asynchronous events can be handled after the

completion of the current instruction.

CSCE430/830

Exception classification

 User requested versus coerced- If the user task directly asks for

it, it is a user-requested event.

 User-requested exceptions are not really exceptions

 They can be handled after the instruction has completed

 Coerced exceptions are caused by some hardware event that is

not under the control of user program

 Harder to implement, not predictable

CSCE430/830

Exception classification

 Within instruction versus between instructions - whether the event

(in the middle of execution of an instruction) does not allow

the instruction completion (usually synchronous) or whether it

allows instruction completion.

 It is harder to implement synchronous exceptions within

instructions, since the instruction must be stopped and restarted

 Asynchronous exceptions within instructions arise from hardware

malfunction and terminate program

 Resume versus terminate – if the program’s execution always

stops after the exception, it is a terminate event

 It is easier to implement exception that terminate program

CSCE430/830

Exception classification

CSCE430/830

Exceptions in Simple five-stage

pipeline

 Due to the overlapping of instruction execution,
multiple interrupts can occur in the same clock cycle.
Sources of interrupt in the MIPS are as follows:

 Instruction Fetch, & Memory stages
 Page fault on instruction/data fetch

 Misaligned memory access

 Memory-protection violation

 Instruction Decode stage
 Undefined/illegal opcode

 Execution stage
 Arithmetic exception

 Write-Back stage
 No exceptions!

CSCE430/830

Two simple cases

 Example 1. I/0 device interrupt

 When the interrupt occurs, the current instruction completes,

and the current context is saved. After the interrupt is

serviced, the context is restored, and the execution resumes

from the next instruction.

 Example 2. Page fault / arithmetic overflow

 The current instruction cannot be completed. So it is aborted,

the exception is handled, and the execution resumes from

the instruction causing the exception.

CSCE430/830

Precise exception

 Precise exception preserve the model that instructions execute
in program-generated order, one at a time

• If an exception occurs, the processor can recover from it

 To implement precise interrupts, the interrupt handler needs to

create the illusion of sequential instruction execution.

 To implement a precise exception,

 Complete all instructions before the faulting instruction

 Undo all instructions after the interrupting instruction, and

 Restart from the faulting instruction.

 Otherwise, the interrupt becomes imprecise

CSCE430/830

What happens during a precise

exception

In The Hardware

 The pipeline has to
1) stop executing the offending instruction in midstream,

2) let all preceding instructions complete,

3) flush all succeeding instructions,

4) set a register to show the cause of the exception,

5) save the address of the offending instruction, and

6) then jump to a prearranged address (the address of the
exception handler code)

In The Software

 The software (OS) looks at the cause of the exception and
“deals” with it

 OS could kill the program

CSCE430/830

Exceptions

Exception = non-programmed control transfer

 system takes action to handle the exception

 must record the address of the offending instruction

 record any other information necessary to return afterwards

 returns control to user

must save & restore user state

user program

normal control flow:

 sequential, jumps, branches, calls, returns

System

Exception

Handler Exception:

return from

exception

CSCE430/830

Additions to MIPS ISA to support Exceptions

 EPC (Exceptional Program Counter)

 A 32-bit register

 Hold the address of the offending instruction

 Cause

 A 32-bit register in MIPS (some bits are unused currently.)

 Record the cause of the exception

 Status - interrupt mask and enable bits and determines what exceptions can
occur.

 Control signals to write EPC , Cause, and Status

 Be able to write exception address into PC, increase mux set PC to exception
address (MIPS uses 8000 00180hex).

 May have to undo PC = PC + 4, since want EPC to point to offending
instruction (not its successor); PC = PC – 4

 What else?

flush all succeeding instructions in pipeline

CSCE430/830

Additions to MIPS ISA to support Exceptions

CSCE430/830

Exceptions Example

40hex sub $11, $2, $4

44hex and $12, $2, $5

48hex or $13, $2, $6

4Chex add $1, $2, $1; // arithmetic overflow

50hex stl $15, %6, $7

54hex lw $16, 50($7)

40000040hex sw $25, 1000($0)

40000044hex sw $12, 1004($0)

Exception handling program:

CSCE430/830

Exceptions Example

CSCE430/830

Exceptions Example

CSCE430/830

Simultaneous interrupts

• 2 stages cause an interrupt at the same time

• a solution: handle them in program order

• still precise

How Pipelines Complicate Interrupt

Handling

CSCE430/830

Precise exception

 Precise exception is difficult to implement for

 Pipelined processors

 Because exceptions can be generated out of order in

different pipeline stages

CSCE430/830

Example of difficult cases

LW r4, X F D X M* W

ADD r1, r2, r3 F* D X M W

 The Problem The second instruction interrupts first!

 If the second instruction is restarted first, and then the
first instruction is restarted, then second instruction is
executed twice!

 A Solution Let the hardware post interrupts for
each instruction.

 When instruction enters the W stage, check the interrupt
flags, and handle the flags in instruction order.

CSCE430/830

21

 Interrupts out of order wrt sequential instruction execution

• subsequent instruction causes an interrupt before a previous

instruction

• interrupts still must be handled in program order for precise

interrupts

 A solution: interrupt handled before the write stage

• interrupt recorded in a per-instruction bit vector which flows with

it down the pipeline

• interrupts for instruction in write stage are handled before it changes

any state

• restart all instructions in the pipeline

How Pipelines Complicate Interrupt

Handling

CSCE430/830

22

Multicycle operations in separate pipelines

• some types

 floating point operations

 integer multiply & divide

• can cause imprecise interrupts because operations don’t
necessarily complete in program-generated order

• example:

 cannot restart interrupting & subsequent instructions because
some have completed

 a completed instruction may have overwritten one its source
operands

divf FP exception

multf not done

add completed

How Pipelines Complicate Interrupt

Handling

CSCE430/830

23

CSCE430/830

24

Dealing with imprecise interrupts

 ignore the imprecise interrupt (IBM 360)

 precise mode/imprecise mode (Alphas?)

trade-off: correctness vs. performance

 buffer writes until instructions complete

• future file or shadow register; today called register renaming

• history file (VAX)

costs: additional registers & bypass logic to FUs

How Pipelines Complicate Interrupt

Handling

CSCE430/830

Rename registers

 Rename registers form a pool of registers that can be

temporarily used to store results until the instruction is

“committed”. These can be useful in implementing precise

interrupts.

 Instruction 1 (completed)

 Instruction 2 (completed)

 Instruction 3 (generates an interrupt)

 Instruction 4 (completed, with result in rename register)

 Instruction 5 (not executed yet)

 The result of instruction 4 will be written into a rename

register first. It is written into the final destination (i.e

committed or graduated) after all previous instruction have

completed their executions.

