Pipeline: Exceptions

Portions of these slides are derived from:
Dave Patterson © UCB

Exceptions

O Exceptions definition: “unexpected change in
control flow”

Another form of control hazard.

For example:
add R1, R2, R1; causing an arithmetic overflow
sw R3, 400(R1);
add R5, R1, R2;

Invalid rl contaminates other registers or memory locations!

Types of Exceptions

Exception event IBM 360 VAX Motorola 680x0 Intel 80x86

I/0 device request Input/output Device interrupt Exception (LO to L7 Vectored interrupt
interruption autovector)

Invoking the operating Supervisor call Exception (change Exception Interrupt

system service from a interruption mode supervisor trap) (unimplemented (INT instruction)

user program instruction}—

on Macintosh

Tracing instruction

Not applicable

Exception (trace fault)

Exception (trace)

Interrupt (single-

execution step trap)
Breakpoint Not applicable Exception Exception (illegal Interrupt
(breakpoint fault) instruction or (breakpoint trap)
breakpoint)
Integer arithmetic Program interruption Exception (integer Exception Interrupt (overflow

overflow or underflow;
FP trap

(overflow or
underflow exception)

overflow trap or
floating underflow
fault)

(floating-point
COpProcessor errors)

trap or math unit
exception)

Page fault
(not in main memory)

Not applicable
(only in 370)

Exception (translation
not valid fault)

Exception (memory-
management unit
errors)

Interrupt
(page fault)

Misaligned memory
accesses

Program interruption
(specification
exception)

Not applicable

Exception
(address error)

Not applicable

Memory protection
violations

Program interruption
(protection exception)

Exception (access
control violation
fault)

Exception
{bus error)

Interrupt
(protection
exception)

Using undefined

Program interruption

Exception (opcode

Exception (illegal

Interrupt (invalid

instructions (operation exception) privileged/reserved instruction or break- opcode)
fault) point/unimplemented
instruction)
Hardware Machine-check Exception (machine- Exception Not applicable
malfunctions interruption check abort) (bus error)
Power failure Machine-check Urgent interrupt Not applicable Nonmaskable
interruption interrupt

Exception classification

Synchronous vs Asynchronous - If the event occurs at the same

place every time the program is executed with the same
data and memory allocation, the event is synchronous.
Otherwise asynchronous.

O Except for hardware malfunctions, asynchronous events are caused
by devices external to the CPU and memory.
O Asynchronous events usually are easier to handled

because asynchronous events can be handled after the
completion of the current instruction.

Exception classification

User requested versus coerced- If the user task directly asks for
it, it is a user-requested event.
User-requested exceptions are not really exceptions

They can be handled after the instruction has completed

Coerced exceptions are caused by some hardware event that is
not under the control of user program

Harder to implement, not predictable

Exception classification

Within instruction versus between instructions - whether the event
(in the middle of execution of an instruction) does not allow
the instruction completion (usually synchronous) or whether it
allows instruction completion.

It is harder to implement synchronous exceptions within
instructions, since the instruction must be stopped and restarted

Asynchronous exceptions within instructions arise from hardware
malfunction and terminate program

Resume versus terminate — if the program’s execution always
stops after the exception, it is a terminate event

It is easier to implement exception that terminate program

Exception classification

Within vs,

Synchronous vs. Userrequest between Resume vs.
Exception type asynchronous vs. coerced instructions terminate
I/0 device request Asynchronous Coerced Between Resume
Invoke operating system Synchronous Userrequest Between Resume
Tracing instruction execution Synchronous Userrequest Between Resume
Breakpoint Synchronous Userrequest Between Resume
Integer arithmetic overflow Synchronous Coerced Within Resume
Floating-point arithmetic Synchronous Coerced Within Resume
overflow or underflow
Page fault Synchronous Coerced Within Resume
Misaligned memory accesses Synchronous Coerced Within Resume
Memory protection violations Synchronous Coerced Within Resume
Using undefined instructions Synchronous Coerced Within Terminate
Hardware malfunctions Asynchronous Coerced Within Terminate

Asynchronous Coerced Within Terminate

Power failure

Exceptions in Simple five-stage
pipeline

Due to the overlapping of instruction execution,
multiple interrupts can occur in the same clock cycle.
Sources of interrupt in the MIPS are as follows:

O Instruction Fetch, & Memory stages
O Page fault on instruction /data fetch
O Misaligned memory access
O Memory-protection violation
O Instruction Decode stage
O Undefined/illegal opcode
O Execution stage
O Arithmetic exception
0 Write-Back stage

O No exceptions!

Two simple cases

Example 1. 1/0 device interrupt

When the interrupt occurs, the current instruction completes,
and the current context is saved. After the interrupt is
serviced, the context is restored, and the execution resumes
from the next instruction.

Example 2. Page fault / arithmetic overflow

The current instruction cannot be completed. So it is aborted,
the exception is handled, and the execution resumes from

the instruction causing the exception.

Precise exception

Precise exception preserve the model that instructions execute
in program-generated order, one at a time

If an exception occurs, the processor can recover from it

To implement precise interrupts, the interrupt handler needs to
create the illusion of sequential instruction execution.
To implement a precise exception,

Complete all instructions before the faulting instruction

Undo all instructions after the interrupting instruction, and

Restart from the faulting instruction.

Otherwise, the interrupt becomes imprecise

What happens during a precise
exception

In The Hardware

The pipeline has to
stop executing the offending instruction in midstream,
let all preceding instructions complete,
flush all succeeding instructions,
set a register to show the cause of the exception,
save the address of the offending instruction, and

then jump to a prearranged address (the address of the
exception handler code)

In The Software

The software (OS) looks at the cause of the exception and
“deals” with it

OS could kill the program

Exceptions

normal control flow:
sequential, jumps, branches, calls, returns

T
!

" return from
exception

-«

Exception = non-programmed control transfer
system takes action to handle the exception
B must record the address of the offending instruction
B record any other information necessary to return afterwards
returns control to user

must save & restore user state

Additions to MIPS ISA to support Exceptions

0 EPC (Exceptional Program Counter)
O A 32-bit register
O Hold the address of the offending instruction
0 Cause
O A 32-bit register in MIPS (some bits are unused currently.)

O Record the cause of the exception

O Status - interrupt mask and enable bits and determines what exceptions can
OCCur.

O Control signals to write EPC , Cause, and Status

0O Be able to write exception address into PC, increase mux set PC to exception

address (MIPS uses 8000 00180, ,).

O May have to undo PC = PC + 4, since want EPC to point to offending
instruction (not its successor); PC = PC -4

0 What else?
flush all succeeding instructions in pipeline

Additions to MIPS ISA to support Exceptions

es0oe, s JEX Fu.:.h.'.
¢ IFFlush % [oeees S
inaden § |ID.Flush o
Hazard \, Teeet
[p— detection < !
\ unit /. vy
@
ID/EX u
N—— we | U -
‘ r ‘ ins EX/MEM
I.c;.:,r-r:rc:nl | ':jl M . - t" WB MEM/WB
\) TN " | |
”:\ ID k/ u= EX _I_.A.., S M WB|—e
T F 2 . . ®eecen’ |]
Y Shift)
4 —m- left 2 M
u
X
Registers _/
il 4 —~ ALU
BOD001 B0 =f=r- PC Instruction
7| memery 7 N M Data —
i u memory | | ‘
X
m N
Sign
M
u
X
e[Forwarding \lﬂ_ —|
—l_ unit -

40...
44,
48...

Exceptions Example

sub
and

or

4C...

50..
54...

stl

lw

$11, $2,
12, $2,

$13, $2,

A

$15, %6,

$4
$5
$6

$7

$16, 50($7)

Exception handling program:

40000040k
40000044

SW
SW

$25,
$12,

1000($0)
1004($0)

Exceptions Example

lw $16, 50($7) st $15, $6, $7 add $1, $2, $1

EX.Flush

or$13, . ..

Data F
memory
12

and $12, . ..

IF.Flush

| ID.Flush

! { Hazard 1
detection |
unit f

il

12

50000150 =

400

Clock 6

Exceptions Example

sw $25, 1000($0) bubble (nop) bubble bubble or$13, ...

EX_Flush

IF.Flush

/ Hazard \

- delecltion |
unit f

e

|
|
|
[
|
ID.Flush |
|
|
i
|

ooo

u e MEI\}'I/WB

|
1
H

o

—
ters
12 @ ALU
S
80000180
Data

P memory

+ |—-C><=g) |.(><=g)

u
g
Clock 7 } i Forwarding ti—

‘ : unit /

|

| |

‘ |

‘ :

How Pipelines Complicate Interrupt

Handling
-

Simultaneous interrupts
- 2 stages cause an interrupt at the same time
- asolution: handle them in program order
- still precise

Precise exception

Precise exception is difficult to implement for

Pipelined processors

Because exceptions can be generated out of order in
different pipeline stages

Example of difficult cases

LW r4, X F D X Mm* W
M

ADD r1, r2, r3 F* D X W

The Problem The second instruction interrupts first!

If the second instruction is restarted first, and then the
first instruction is restarted, then second instruction is
executed twicel

A Solution Let the hardware post interrupts for
each instruction.

When instruction enters the W stage, check the interrupt
flags, and handle the flags in instruction order.

How Pipelines Complicate Interrupt

Handling
21

o Interrupts out of order wrt sequential instruction execution

subsequent instruction causes an interrupt before a previous
instruction

interrupts still must be handled in program order for precise
interrupts

0 A . interrupt handled before the write stage

interrupt recorded in a per-instruction bit vector which flows with
it down the pipeline

interrupts for instruction in write stage are handled before it changes
any state

restart all instructions in the pipeline

How Pipelines Complicate Interrupt

- Handling

Multicycle operations in separate pipelines
some types
= floating point operations
= Integer multiply & divide

can cause imprecise interrupts because operations don’t
necessarily complete in program-generated order

example: divf FP exception
multf not done
add completed

= cannot restart interrupting & subsequent instructions because
some have completed

= a completed instruction may have overwritten one its source
operands

Integer unit

FP/integer divider

B s R ?
o

How Pipelines Complicate Interrupt

- Handling

Dealing with
o ignore the imprecise interrupt (IBM 360)

o precise mode/imprecise mode (Alphas?)
trade-off: correctness vs. performance

o buffer writes until instructions complete
future file or shadow register; today called register renaming

history file (VAX)
costs: additional registers & bypass logic to FUs

Rename registers

Rename registers form a pool of registers that can be
temporarily used to store results until the instruction is
“committed”. These can be useful in implementing precise
interrupts.

Instruction 1 (completed)

Instruction 2 (completed)

Instruction 3 (generates an interrupt)

Instruction 4 (completed, with result in rename register)
Instruction 5 (not executed yet)

The result of instruction 4 will be written into a rename
register first. It is written into the final destination (i.e

committed or graduated) after all previous instruction have
completed their executions.

