
1

Buses

2

Introduction

Buses are the simplest and most widely
used interconnection networks

A number of modules is connected via a
single shared channel

Micro-

controller

Digital

Signal

Processor

Input/

Output

Device

Memory

Bus

3

Bus Properties

Serialization

Only one component can send a message at
any given time

There is a total order of messages

Module

1

Module

2

Module

3

Module

4

Bus
1 2

4

Bus Properties

Broadcast

A module can send a message to several other
components without an extra cost

Module

1

Module

2

Module

3

Module

4

Bus

5

Bus Hardware

Principle for hardware to access the bus

Bus Transmit: ET active

Bus Receive: ER active

6

Cycles, Messages and Transactions

 Buses operate in units of cycles, messages and
transactions

Cycles: A message requires a number of cycles to be
sent from sender to receiver over the bus

Message: Logical unit of information (a read message
contains an address and control signals for read)

Transaction: A transaction consists of a sequence of
messages which together form a transaction (a memory
read requires a memory read message and a reply with
the requested data)

7

Synchronous Bus

 Includes a clock in the control lines

 A fixed protocol for communication
that is relative to the clock

 Advantage: involves very little logic
and can run very fast

 Disadvantages:

Every device on the bus must run at
the same clock rate

To avoid clock skew, they cannot be
long if they are fast

8

Asinchronous Bus

 It is not clocked

 It can accommodate a wide
range of devices

 It can be lengthened without
worrying about clock skew

 It requires a handshaking
protocol

1. Master puts address on bus and

asserts READ when address is

stable

2. Memory puts data on bus and

asserts ACK when data is stable

3. Master deasserts READ when data

is read

4. Memory deasserts ACK

1

2

3

4

9

Bus Arbitration

 Since only one bus master can use
the bus at a given time bus
arbitration is used

 An arbiter collects the requests of
all bus masters and gives only one
module the right to access the bus
(bus grant)

 Arbiters are not only used in bus-
system, but everywhere where
several devices request shared
resources

10

Arbiter Interfaces

This arbiter interface can be used to give a
bus grant for a fixed number of cycles

(a): 1 cycle

(b): 4 cycles

r0

r1

…

rn-1

g0

g1

…

gn-1

11

Arbiter Interfaces

 This arbiter allows for variable length grants

 The grant is hold as long as the “hold”-line is asserted

 In cycle 2 requester 0 gets the bus for 3 cycles

 In cycle 5 requester 1 gets the bus for 2 cycles

 In cycle 7 requester 1 gets the bus for one cycle

r0

h0

…

rn-1

hn-1

g0

g1

…

gn-1

12

Fairness

 Fairness is a key property of an arbiter

 Some definitions

Weak fairness: Every request is eventually served

Strong fairness: Requests will be served equally often

Weighted “strong” fairness: The number of times
requester i is served is equal to its weight wi

FIFO fairness: Requests are served in the order the
requests have been made

13

Local Fairness vs. Global Fairness

 Even if an arbiter is locally fair, a system with several
arbiters employing that arbiter may not be fair

 Though each arbiter Ai allocate 50% of their bandwidth to
its two inputs, r0 only gets 12.5% of the total bandwidth,
while r3 gets 50%

14

Fixed-Priority Arbiter

 A fixed-priority arbiter can be constructed as
an iterative circuit

 Each cell receives a request input ri and a
carry input ci and generates a grant output gi
and a carry output ci+1

 The resulting arbiter is not fair, since a
continuously asserted request r0 means that
none of the other requests will ever be
served!

15

Variable-Priority Arbiters

Oblivious Arbiter

Round-Robin Arbiter

Grant-Hold Circuit

Weighted Round-Robin Arbiter

16

Fair Arbiters

 A fair arbiter can be
generated by changing
the priority from cycle to
cycle

 Depending on the priority
generation, different
arbitration schemes and
degrees of fairness can
be achieved

17

Fair Arbiters

 Oblivious Arbiters

 If pi is generated without knowledge of ri
and gi, the result is an oblivious
(unconscious) arbiter

Examples are

 Randomly generated pi

 Rotating priorities (by shiftregister)

18

Oblivious Arbiters

 Oblivious arbiters provide

weak fairness

but not strong fairness (i.e. if r0
and r1 are constantly asserted, r0
will receive the grant 3 times and
r1 only 1 time)

1

1

0

0

1

0

0

0

0

0

0

0

1

1

0

1

19

g0

g1

g2

g3

p0

r0

p1

r1
p2

r2

p3

r3

Round-Robin Arbiter

 A round-robin arbiter achieves strong fairness

A request that was just served gets the lowest priority

 One-bit round-robin arbiter

Grant

generation

Round

Robin

g0

g1

g2

g3

20

Round-Robin Arbiter

g0

gn-1

g0

gn-1

next_pi <= gi-1OR (pi AND NOT anyg)

21

Round-Robin Arbiter

Any g is low

22

Round-Robin Arbiter

One g is high

23

Grant-Hold Circuit

Extends the duration of a grant

As long as hold is asserted further arbitration is
disabled

24

Grant-Hold Circuit

An example for all hi=0

25

Grant-Hold Circuit

An example for holding a grant

26

Weighted Round-Robin Arbiter

 A weighted round-robin arbiter allows to give requesters a larger
number of grants than other requesters in a controlled fashion

 If three devices have the weight 1,2,3 they get 1/6, 1/3 and 1/2 of the
grants

 The preset line is activated periodically after N (here 6 cycles) to load
the counter with its weight

 If some arbiters do not issue any requests during that interval, the
shared resource will remain idle until the next preset cycle

If Count0 the and gate is

enabled

Decremented each time a

grant is received

Initialized periodically every

W cycles

W=wi

27

Round

Robin

Arbiter

qr0

qrn-1

Counter=0
p0

d0

g0

Weight0

Counter=0
pn-1

dn-1

Weightn

gn-1

Weighted Round-Robin Arbiter

preset

r0

rn-1

28

Matrix Arbiter

Matrix W=[wij] of weights

wij=1 if request i takes priority over j

ij wij

gj

gi

Wij*=! gj · (gj + Wij)

Wij= ! Wji

29

Matrix Arbiter

g0= r0 · ! (r1 · W01+r2 · W02)

W*01= ! g1 · (g0 + W01)

W*02= ! g2 · (g0 + W02)

g1= r1 · ! (r0 · W10+r2 · W12)

W*10= ! g0 · (g1 + W10)

W*12 = ! g2 · (g1 + W12)

g2= r2 · ! (r0 · W20+r1 · W21)

W*20 = ! g0 · (g2 + W20)

W*21 = ! g1 · (g2 + W21)

30

Matrix Arbiter

W01=0, W02=0, W10=1, W12=0, W20=1, W21=1

r0=1, r1=1, r2=1

g0= r0 · ! (r1 · W01+r2 · W02) = 1

W*01= ! g1 · (g0 + W01) = 1

W*02= ! g2 · (g0 + W02) = 1

g1= r1 · ! (r0 · W10+r2 · W12) = 0

W*10= ! g0 · (g1 + W10) = 0

W*12 = ! g2 · (g1 + W12)= 0

g2= r2 · ! (r0 · W20+r1 · W21) = 0

W*20 = ! g0 · (g2 + W20) = 0

W*2 1= ! g1 · (g2 + W21) = 1

31

Matrix Arbiter

W01=1, W02=1, W10=0, W12=0, W20=0, W21=1

r0=1, r1=1, r2=1

g0= r0 · ! (r1 · W01+r2 · W02) = 0

W*01= ! g1 · (g0 + W01) = 0

W*02= ! g2 · (g0 + W02) = 1

g1= r1 · ! (r0 · W10+r2 · W12) = 1

W*10= ! g0 · (g1 + W10) = 1

W*12 = ! g2 · (g1 + W12)= 1

g2= r2 · ! (r0 · W20+r1 · W21) = 0

W*20 = ! g0 · (g2 + W20) = 0

W*2 1= ! g1 · (g2 + W21) = 0

32

Matrix Arbiter

W01=0, W02=1, W10=1, W12=1, W20=0, W21=0

r0=1, r1=1, r2=1

g0= r0 · ! (r1 · W01+r2 · W02) = 0

W*01= ! g1 · (g0 + W01) = 0

W*02= ! g2 · (g0 + W02) = 0

g1= r1 · ! (r0 · W10+r2 · W12) = 0

W*10= ! g0 · (g1 + W10) = 1

W*12 = ! g2 · (g1 + W12)= 0

g2= r2 · ! (r0 · W20+r1 · W21) = 1

W*20 = ! g0 · (g2 + W20) = 1

W*2 1= ! g1 · (g2 + W21) = 1

33

Matrix Arbiter

 wij = !wji ij

 A requester will be
granted the resource if no
other higher priority
requester is bidding for
the same resource

 Once a requester
succeeds in being granted
a resource, its priority is
updated and set to be the
lowest among all
requesters

 Request i granted

[i,*] 0

[*,i] 1

34

Matrix Arbiter

 A matrix arbiter implements a least
recently served priority scheme
by maintaining a triangular array of
state bits wij for all i < j

 The Matrix arbiter is very good
suited for a small number of inputs,
since it is fast, easy to implement
and provides strong fairness!

 Matrix must be initialized to a legal
state

35

Queuing Arbiter

 A queuing arbiter provides FIFO fairness

 It assigns each request a time stamp when it is asserted

 The request with the earliest time stamp receives the grant

36

Low Performance Bus Protocol

 Without a special bus protocol the bus is not efficiently
used

 In the example module 2 requests the bus in cycle 2, but
must wait until cycle 6 to receive the grant

37

Bus Pipelining

 A memory access consists of several cycles (including
arbitration)

 Since the bus is not used in all cycles, pipelining can be
used to increase the performance

 Only one transaction can

Receive the grant during a given cycle

Use the bus during a given cycle

38

Bus Pipelining

 Pipelining leads to an efficient use of the bus

 Stalls are inserted since only one instance can use the bus

 Sometimes (cycle 12) two transactions can overlap

 However this cannot be done in cycle 5 (2. Write) since otherwise
RPLY and ACK would overlap in cycle 6!

39

Split-Transaction Bus

 In a split-transaction bus a transaction is
 splitted into a two transactions

request-transaction

reply-transaction

Both transactions have to compete for the
bus by arbitration

40

Split-Transaction Bus

R1

W1

W2

R2

R1’

R3

W1’

R4

W2’

R2’

R3’

R4’

41

Split-Transaction Bus

 The advantages of the split-transaction bus are evident, if
there is a variable delay for requests, since then
transactions cannot overlap

42

Burst Messages

 There is a considerable amount of overhead in a bus
transaction

Arbitration

Addressing

Acknowledgement

Efficiency = Transmitted Words / Message Size = 1/3

43

Burst Messages

 The overhead can be reduced, if messages are sent as
blocks (bursts)

Efficiency = Transmitted Words / Message Size = 2/3

44

Burst Messages

 The longer the burst, the better the efficiency

 BUT

Other bus masters have to wait, which may be unacceptable in
many systems (Real-Time)

 Possible solution

Maximum length for a burst

Interrupt of long messages

Restart or Resume

