Multi-Objective Optimization

Introduction to MOO

\square Most real-world engineering optimization problems are multi-objective in nature

- Objectives are often conflicting
\rightarrow Performance vs. Silicon area
\Rightarrow Quality vs. Cost
\rightarrow Efficiency vs. Portability
\square The notion of optimum has to be re-defined

Statement of the Problem

■ Multiobjective optimization (multicriteria, multiperformance, vector optimization)
\Rightarrow Find a vector of decision variables which satisfies constraints and optimizes a vector function whose elements represent the objective functions
\Rightarrow Objectives are usually in conflict with each other
\Rightarrow Optimize: finding solutions which would give the values of all the objective functions acceptable to the designer

Mathematical Formulation

Find the vector

$$
\bar{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

- Which will satisfy the m inequality constraints

$$
g_{i} x \geq 0 \quad i=1,2, \square, m
$$

- The p equality constraints

$$
h_{i} X=0 \quad i=1,2, \square, p
$$

■ And optimizes the vector function

$$
\bar{f}(\bar{x})=\left[f_{1}(\bar{x}), f_{2}(\bar{x}), \ldots, f_{k}(\bar{x})\right]
$$

Feasible Region

$$
\left.\begin{array}{ll}
g_{i} X \geq 0 & i=1,2, \square, m \\
h_{i} \underline{x}=0 & i=1,2, \square, p
\end{array}\right\} \text { Define the feasible region } F
$$

Convex sets

Non-convex sets

Meaning of Optimum

■ We rarely have an x optimum such that

$$
f_{i}\left(\bar{x}^{\text {opt }}\right) \leq f_{i}(\bar{x}) \quad \forall \bar{x} \in F, i=1,2, \ldots, k
$$

- We have to estabilish a a certain criteria to determine what would be considered as an optimal solution

Pareto Set

■ A solution $x o \phi F$ is said to dominate $y o \phi$ F if
$\rightarrow x$ is better or equal to y in all attributes
$\Rightarrow x$ is strictly better than y in at least one attribute
■ Formally, \boldsymbol{x} dominate \boldsymbol{y}

$$
\begin{gathered}
f_{i} X \leq f_{i} y, \quad i=1,2, \ldots, k \\
\exists j \in\{1,2, \ldots, k\}: f_{j} X \square f_{j} y
\end{gathered}
$$

\square The Pareto set consists of solutions that are not dominated by any other solutions

Pareto Front

