Multi-Objective Optimization

Introduction to MOO

- Most real-world engineering optimization problems are multi-objective in nature
- Objectives are often conflicting
 - Performance vs. Silicon area
 - →Quality vs. Cost
 - → Efficiency vs. Portability

→...

The notion of optimum has to be re-defined

Statement of the Problem

- Multiobjective optimization (multicriteria, multiperformance, vector optimization)
 - Find a vector of decision variables which satisfies constraints and optimizes a vector function whose elements represent the objective functions
 - Objectives are usually in conflict with each other
 - Optimize: finding solutions which would give the values of all the objective functions acceptable to the designer

Mathematical Formulation

Find the vector

$$\overline{\mathbf{x}} = \begin{bmatrix} x_1, x_2, \dots, x_n \end{bmatrix}$$

• Which will satisfy the *m* inequality constraints $g_i \ge 0$ $i=1,2, \Box, m$

The p equality constraints

 $h_i X = 0$ $i=1,2, \Box, p$ And optimizes the vector function

$$\overline{f}(\overline{x}) = \left[f_1(\overline{x}), f_2(\overline{x}), \dots, f_k(\overline{x}) \right]$$

Feasible Region

$$g_i X \ge 0 \quad i=1,2, \Box, m$$
$$h_i X = 0 \quad i=1,2, \Box, p$$

Define the *feasible region F*

Meaning of Optimum

We rarely have an x optimum such that

We have to estabilish a certain criteria to determine what would be considered as an optimal solution

Pareto Set

- A solution x o F is said to dominate y o F
 F if
 - $\rightarrow x$ is better or equal to y in all attributes
 - x is strictly better than y in at least one attribute
- Formally, **x** dominate **y** $f_i \not x \leq f_i \not y$, i=1,2,...,k $\exists j \in \{1,2,...,k\}: f_i \not x \Box f_i \not y$

Vilfredo Pareto 1848-1923

The Pareto set consists of solutions that are not dominated by any other solutions

Pareto Front

