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Abstract—Costs associated with the power consumption and 
cooling requirements of servers in a data center are significant. 
For this reason, a lot of research efforts in the area of power 
management have been devoted toward greening data centers and 
clouds in the last years. This work starts from the observation that 
the main target of a DC manager is not only to save energy for the 
environment, but also reduce operational costs. To this purpose, 
the paper focuses on a single server management, and proposes a 
joint power management and resource allocation strategy that 
modulates the number of active VMs on a given server according 
to both the current workload and the current value of the virtual 
machine power cost, in order to minimize the total server 
management cost, while matching the SLA with the customers. An 
analytical model is proposed to support design of the resource 
allocation controller parameters. 

Index Terms—Cloud Computing; Resource Allocation; QoS; 
Pricing; Markov Modeling. 

I. INTRODUCTION 
In the last decade cloud computing has received an enormous 

success, becoming one of the most important paradigms for 
computing and service. A common form to host cloud 
computing is with Data Centers (DC). The main problem of 
managing a DC is that it consumes huge amounts of energy, 
contributing to high operational costs and carbon footprints to 
the environment. Recent studies [1] indicate that the costs 
associated with the power consumption and cooling 
requirements of servers over their lifetime are significant. For 
example, according to Amazon.com’s estimates [2], energy-
related costs amount to 42% of the total, including both direct 
power consumption (19%) and the cooling infrastructure 
(23%).1 

As a result, a lot of research efforts in both academia and 
industry in the area of power management have been devoted 
toward greening DCs and clouds. One of the most common 
approach exploit virtualization technology for server 
consolidation and dynamic load distribution and/or load 
balancing. According to this approach, multiple OS 
environments are able to coexist on the same physical computer 
in different Virtual Machines (VM), that can be migrated to 
facilitate server-consolidation in such a way that idle servers 
could be turned off (or hibernated) to save energy. 

                                                           
1 This work has been partially supported by the INPUT project funded by the 
European Commission under the Horizon 2020 Programme (Call H2020-ICT-
2014-1, Grant no. 644672), and by the "PON “Ricerca & Competitività” 2007-

A lot of literature has regarded power reduction in this 
context, working at three different levels: the server level, the 
data center level, and the inter-data center level. Most of the 
focus has been devoted to the second (e.g. through data center 
right sizing [3]) and third levels (e.g. balancing workload across 
centers [4]), while at the server level the approach has been 
mainly limited to power speed scaling [5], by using techniques 
such as DVFS and low-power P-states [6].  

Our work falls at the server level, but is focused on the 
management of VMs within a given server. This role is played 
by the DC control architecture [7]. The paper starts from the 
observation that the main target of a DC manager is not only to 
save energy for the environment, but also reduce operational 
costs, so maximizing its revenue while satisfying the Service 
Level Agreement (SLA) with the DC customers. To this purpose 
let us notice that, besides workload aspects, other factors, like 
for example time-variant price of the electricity, have to be 
considered. More specifically, the whole cost to provide a given 
service by running a VM on a server of a DC depends at least on 
the following factors: 1) the power usage of the specific VM [8]; 
2) the tariff currently applied by the energy provider; 3) the 
amount of available energy from low-cost renewable energy 
sources, if any; 4) the energy dissipated by the air conditioners 
to cool the server room. For these reasons, in the following we 
will indicate the whole cost, expressed in price units (PUs), to 
maintain active a VM in a given time unit as VMPC (VM power 
cost). As discussed so far, it changes in time according to the 
above factors. 

On the basis of the above observations, the paper focuses on 
a single server management, and proposes a joint power 
management and resource allocation strategy that modulates the 
number of active VMs on a given server according to both the 
current workload and the current value of the VMPC, in order to 
minimize the total server management cost, while matching the 
SLA with the customers. This is pursued by leveraging on the 
possibility of delaying some service in order to take advantage 
of the periods when the VMPC is lower. To this purpose the 
number of active VMs is reduced during periods when the 
VMPC is high, while is increased in the other periods to serve 
job requests that have been accumulated in a buffer to wait VM 
availability. Hence our proposed solution is relevant to many 
current and future cloud computing scenarios, e.g. search, data 

2013” within the project "PON04a2_E – SINERGREEN – RES NOVAE –
Smart Energy Master per il governo energetico del territorio”.. 
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analytics, social networking, etc. because is very effective for 
delay tolerant workloads [9], such as massively parallel and data 
intensive MapReduce jobs.  

The paper target is twofold: 1) it proposes an electricity-
price-aware Resource Allocation Controller (RAC) that 
implements an automated policy to decide at runtime when 
turning on and off VMs on a server of a DC; 2) it proposes an 
analytical model that supports design of the RAC, minimizing 
costs due to both the electrical energy consumption and the 
possible usage of external backup resources in the case of 
temporary lack of available local resources. 

The paper is structured as follows. Section II describes the 
system we consider in the rest of the paper. Section III 
introduces the analytical model of the job queueing system and 
the time-variant set of active VMs. Section IV analytically 
derives the main performance parameters. Section V illustrates 
the proposed price-aware strategy, stressing the fact that the 
analytical model is so general that it can be applied to capture 
any RAC policy based on VM management. Section VI applies 
the proposed RAC to a case study and numerically evaluates 
performance. Finally, Section VII draws some conclusions. 

II. SYSTEM DESCRIPTION 
In this paper we consider a DC that receives VM requests 

from customers in the form of jobs. Each server in the DC hosts 
VMs of the same type, characterized by a specific configuration 
of CPU, memory, and storage. The DC operates in a time-slotted 
fashion.  

Specifically we focalize on a generic server that is devoted 
to manage a given VM configuration. Accordingly, let SN  be 
the maximum number of VMs that the considered server can 
host, and μ  be the job processing rate for a VM, representing 
the mean number of jobs that a VM can process in one slot. 

Taking into account, as discussed in the previous section, 
that a running VM causes an amount of electricity power 
consumption, and that electricity power has a time variant cost, 
let us indicate the whole time-variant VM power cost (VMPC), 
expressed in Price Units (PUs), with the process )(nP . The goal 
of the Resource Allocation Controller (RAC) is to orchestrate 
the on and off switching operations of the VMs according to the 
current load, the run-time value of )(nP  and the required level 
of quality of service (QoS) defined in the SLA with the 
customers, expressed as the mean response time, i.e. the time 
needed to complete the service, starting from the instant when 
the request arrives to the DC.   

Let us now describe the server behavior model we consider 
in this paper. Arriving jobs are queued when no VM is available 
in the server. Let K be the maximum number of jobs that can be 
accommodated in the queue. When some active VMs conclude 
their current job, the RAC extracts new jobs from the queue 
according to a first-in-first-out (FIFO) policy and runs them on 
the free VMs. Let us define the RAC decision interval, Δ , as the 
period between two consecutive events when the RAC monitors 
the system and decides if turning off or on some of the available 
VMs.  

At each decision interval, the RAC decides the number of 
VMs that have to work in the next period Δ  according to a given 
decision function ( )ν)(RAC

sQ
Γ  that depends on the current number 

Qs  of jobs that are present in the server, i.e. both running on the 
processor or waiting in the queue. The RAC uses the function 

( )ν)(RAC
sQ

Γ  as follows: at each decision time, if Qs  jobs are present 
in the server, in the next decision interval a number of ν  VMs 
have to be active with a probability ( )ν)(RAC

sQ
Γ . In Section V we 

will define a particular  function ( )ν)(RAC
sQ

Γ , but any decision 
function can be used without requiring any modification of the 
proposed model.  

In order to avoid sudden changes in the number of active 
VMs, the new number of active VMs, nextν̂ , is decided also 
using the current number of VMs, currν , applying the following 
exponentially weighted moving average (EWMA) filter: 

( ) νγνγν ⋅−+⋅= 1ˆ
currnext  (1) 

where ν  is the number of VMs obtained by generating an 
integer random variable using ( )ν)(RAC

sQ
Γ , and γ  is a parameter 

belonging to the interval [ ]1,0  that allows the RAC to decide the 
weight to be given to the past history. Since the value of nextν̂  
calculated as in (1) may not be an integer, the RAC will decide 
to use either  nextnext νν ˆ=  or   1ˆ += nextnext νν  with probabilities 
that are proportional to the distance from nextν̂ , that is: 

   

   



+
=

+1 :probwith 1ˆ
 probwith ˆ

p
p

next

next
next ν

ν
ν  (2) 

where: 

    nextnextp νν ˆ1ˆ −+=   

   nextnextp νν ˆˆ
1 −=+  

(3) 

III. SYSTEM MODEL 
In this section we will model the server behavior when the 

RAC applies the decision function ( )ν)(RAC
sQ

Γ . Let us stress that 
the model is very general and can be easily extended to any RAC 
policy that considers the same target. 

Let us define a discrete-time Markov model, using the slot 
time as equal to the RAC decision interval, Δ , as defined in the 
previous section. The model has to capture the time-variant 
behavior of both the job arrival and the VMPC processes. To 
this end we will model the above two processes by using a 
switched batch Bernoulli process (SBBP) [10], the most general 
Markov modulated process in the discrete-time domain.  

An SBBP, )(nY , is a process that is modulated by an 
underlying Markov chain (uMc). In this way the process )(nY  
behaves following a different probability density function  (pdf) 
according to the state of the uMc. Therefore an SBBP )(nY  is 
fully described by the set )(Yℵ  of values that it can assume, the 
state space )(Yℑ  of its uMc, and the matrix set ( ))()( , YY BP , 
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where )(YP  is the transition probability matrix of the uMc, while 
)(YB  is the matrix whose rows contain the pdfs associated to the 

chain states. If we indicate the state of the uMc in the generic 
slot n as )()( nS Y , the generic elements of the above matrices are 
defined as follows: 

[ ] { }Y
Y

Y
YY

ss snSsnSP
YY

′=′′=+=′′′ )()1(Prob )()()(
,  

[ ] { }Y
YY

rs snSrnYB
Y

′===′ )()(Prob )()(
,       

                        )(, Y
YY ss ℑ∈′′′∀   and )(Yr ℵ∈∀  

(4) 

where [ ]
)(
,

Y
ss YY

P ′′′  represents the probability of transition from Ys′  to 
the state Ys ′′ , while [ ]

)(
,

Y
rsY

B ′  is the probability that )(nY  assumes 
the value  r  when the uMc state is Ys′ . 
So we will characterize the job arrival process )(nA  with the 
SBBP model described by the matrix set ( ))()( , AA BQ , the state 
space of the uMc )( Aℑ , and the set of possible values the process 

)(nA  can assume, )( Aℵ . Likewise, ( ))()( , PP BQ , )( Pℑ , and )( Pℵ  
will characterize the VMPC process )(nP .  

Now let us define the state of the job queueing system of the 
server at the generic slot n with the 4-dimensional Markov 
process ( ))(),(),(),()( )()()()()( nSnSnSnSnS PAQS=Σ , where: 
• [ ]S

S NnS ,0)()( ∈  represents the number of active VMs; 
• [ ]S

Q NKnS +∈ ,0)()(  represents the population in the 
server at the slot n, that is the total number of jobs waiting 
in the queue or running on the active VMs; 

• )()( )( AA nS ℑ∈  represents the state of the uMc of the job 
arrival process )(nA ; 

• )()( )( PP nS ℑ∈  represents the state of the uMc of the VMPC 
process )(nP . 

Let us now consider two generic states: ( )11111 ,,, PAQS sssss =Σ  

in the slot n, and ( )22222 ,,, PAQS sssss =Σ  in the slot 1+n . We 
assume the following event sequence during each slot: 

1. the VMPC and the arrival processes change their 
values at the beginning of the slot; 

2. some new jobs enter the system to be served; if the 
active VMs are not sufficient, some of them are 
enqueued; 

3. the jobs that have finished their work leave the server, 
so freeing some VMs; 

4. the server population variable is updated according to 
the number of arrived and served jobs; 

5. at the end of the slot, the RAC decides how many VMs 
have to be active in the next slot according to the 
current values of population and the current VMPC; 

6. Finally, the system state variables are observed and the 
Markov processes updated. 

Now we can define the generic element of the state transition 
probability matrix as follows: 

[ ] { }
[ ] ( ) [ ]( ) [ ] [ ]

)(
,

)(
,21

)(
,222

)(
,

1
)(

2
)()(

,

21212121

21

,,,     

)()1(Prob
P

ss
A

ssAS
Q

ssPAQ
S

ss

ss

PPAAQQSS
PPssPsssP

snSsnSP

⋅⋅⋅=

===+= Σ
Σ

Σ
ΣΣ

ΣΣ  (5) 

where: 
• ( )222

)( ,, PAQ
S sssP  is the transition probability matrix of the 

number of active VMs. In order to derive its generic 
element, let us consider that the RAC decides the number 

nextν̂  of active VMs, first drawing a value ν  by using the 

decision function ( )ν)(RAC
sQ

Γ , then weighting the past history 
with the parameter γ  according to (1), and finally, as in (2), 
rounding the result to one of the closest integer values with 
the probabilities in (3). So, since the value ν  is drawn with 
probability ( )ν)(RAC

sQ
Γ , and the term ( ) νγγ ⋅−+⋅ 11Ss  is then 

rounded to the closer integer values with probabilities  p   
and   1+p , we have:    

[ ] ( ) ( ) ( ){ }ννς
ν

)(
21

0
222

)(
, 221

,,,, RAC
sSS

N

PAQ
S

ss Q

S

SS
sssssP Γ⋅=

=
(6) 

where  
( )

  ( ) 
  ( ) 
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otherwise0
11 :  if

1 :   if
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ssp
ssp
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(7) 

• ( )21
)( , AS

Q ssP  is the transition probability matrix of the server 
population, that depends on both the number of active VMs 
and the state of the arrival process. If we indicate the 
number of jobs that leave the server with [ ]1,0 Ss∈σ , and the 
number of job arrivals as ρ , with )( Aℵ∈ρ , the transition 
probability for the server population state from 1Qs  to 2Qs  
can be derived as follows: 

[ ]( )

[ ] ( ) ( )σρσρ
σρ

,,      

,

2112

2

)(

21

,1
)()(

,
0

21
)(
,

QQSA

S

A

QQ

ssQ
SERV

s
A

s

s

AS
Q

ss

IspB

ssP

⋅⋅=

=


=ℵ∈

 (8) 

where: 
o ( )σρ,

21 , QQ ssI  is the Boolean function indicating that the 
server population state 2Qs  is reachable from 1Qs  when 
ρ  arrivals occurred in the generic slot, and σ  jobs  

have been served in the same slot. According to the 
Lindley equation, we have: 

  
( )

( )[ ]


 =−++

=

=

otherwise0
0,,maxmin  if1

,

211

, 21

QSQ

ss

ssKs

I
QQ

σρ

σρ
 (9) 

o [ ]
)(

,2

A
sA

B ρ  is the probability that ρ  arrivals occur when 
the underlying Markov chain of the arrival process is 
in the state 2As ; 

o ( )1
)( ,

1 Q
SERV

s sp
S

σ  is the probability that σ  jobs are served 
in one slot when 1Ss  VMs are active and 1Qs  jobs are 
in the server. 
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In order to calculate ( )1
)( ,

1 Q
SERV

s sp
S

σ , first let us observe that 
the number of working VMs in a generic slot is given by 
the minimum between the number of active VMs, 1Ss , and 
the whole number of jobs in the server, 1Qs . Therefore, the 
expected number of jobs served by the whole server in the 
current slot is: 

( )11,min SQ ss⋅= μω  (10) 
where μ  is the mean number of jobs that a VM can serve 
in one slot. Since ω  may not be an integer, similarly to what 
has been done so far, we consider that the server serves 
either  ω  or   1+ω  jobs with probabilities  ψ  and 

  1+ψ , respectively. Therefore, we have: 

( )
   
   








=+

=
= +

otherwise0
1  if

  if
, 11

)(
1

σωψ
σωψ

σ Q
SERV

s sp
S

 (11) 

• )(AP  and )(PP  are the transition probability matrices of the 
underlying Markov chains of the arrival and the VMPC 
processes, as defined so far; they are model inputs. 

Now, from the matrix )(ΣP  defined in (5) we can derive the 
system steady-state probability array 

)(Σπ  by solving the linear 

equation system )()()( ΣΣΣ = ππ P .  

IV. PERFORMANCE PARAMETER DERIVATION 
In this section we derive the main QoS system parameters by 

using the model proposed in the previous section.  
The mean response time, defined as the mean value of the 

total time spent by the generic job in the server, can be derived 
by applying the Little theorem: 

{ } [ ] JsTE
APQS

A
A

P
P

S

Q

S

S

ssssQ
ss

sK

s

N

s








⋅= Σ

ℑ∈ℑ∈

+

==
Σ  )(

,,,
00 )()(

π  (12) 

where the numerator is the mean number of jobs that are present 
in the whole server, while the denominator is the mean job 
arrival rate, that can be easily derived from the SBBP model of 
the arrival process as follows: 

[ ]
)()(

],[
)()(

A
s

A
rs

sr
AA

A
A

A

BrJ π⋅⋅= 
ℑ∈ℵ∈

 (13) 

Another important parameter that characterizes the system 
behavior is the mean number of active VMs. It can be calculated 
as follows: 

{ } [ ]
)(

,,,
00 )()(

Σ

ℑ∈ℑ∈

+

==

⋅=  APQS
A

A
P

P

S

Q

S

S

ssssS
ss

sK

s

N

s

sVME π  (14) 

Now, let us calculate the rejection probability of a job, defined 
as the probability that a job cannot be enqueued due to buffer 
overflow, and so is redirected to a backup resource to be served 
with a higher cost: 

JLPrej =  (15) 
where L  is the mean value of rejected jobs per slot. It can be 
obtained taking into account that, if Qs  jobs are in the server 
and the server is working with Ss  VMs, the system can 

accommodate ( )[ ]QS ssK −+  jobs only: Therefore, if r new jobs 
arrive to the server, ( ) ( )[ ]QSSQ ssKrssr −+−=,,  are rejected. 
So, we have: 

( ) [ ] [ ]
)(

,,,
)(
,

100

,,
)(

)(
)(

Σ

+−+=
ℑ∈
ℑ∈

+

==

⋅⋅=  APQSA

A
MAX

QS
A

A

P
P

S

Q

S

S

ssss
A

rsSQ

r

ssKr
s
s

sK

s

N

s

BssrL π  (16) 

Another important QoS parameter is the mean cost due to the 
electrical energy consumed by the active VMs. It can be 
calculated as follows: 

{ } [ ] [ ]
)(

,,,
)(
,

00
Prim

)()()(

Σ

ℵ∈ℑ∈ℑ∈

+

==

⋅⋅⋅=  APSQPP
P

P
A

A
P

P

S

Q

S

S

ssss
P

rsSP
rss

sK

s

N

s

BsrCE π

 
(17) 

where Pr  is the generic value assumed by the VMPC process 
(so ( )SP sr ⋅  is the generic cost to maintain Ss  VMs active), and 

[ ]
)(
,

P
rs PP

B  represents the probability that the VMPC value  is Pr  
when the state of the underlying Markov chain of the price 
process is Ps .  

Finally, let us calculate the total management cost, taking 
into account that all the jobs rejected by the considered server 
are forwarded to a more expensive backup server (for example 
belonging to a remote public cloud). If we indicate the price 
applied by the backup server to serve a job as BKP℘ , we have: 

{ } { } { }BKPPrimTOT CECECE +=  (18) 
where { }BKPCE  is the mean cost of the backup resources: 

{ } JPCE LossBKP ⋅⋅℘=BKP  (19) 

V. PRICE-AWARE DECISION POLICY 
In this section we will propose a decision policy 

( ) ( )( )νν βα ,,)( A
s

RAC
s QQ

f=Γ , where ( ) ( )νβα ,,A
sQ

f  is a function that 
depends on a set of parameters A, α  and β , with [ ]1,0∈A , 

[ ]SN,0∈α , and [ ]1,0∈β , that will be determined in the 
folowing. It has the target of deciding the number of VMs in 
such a way that queue overflow and VMs underutilization are 
minimized, so minimizing the total server management cost. 

The set of parameters A, α  and β  is varied in time 
according to the VMPC with the aim of using more VMs when 
the VMPC is lower. The function ( ) ( )νβα ,,A

sQ
f  has to have the 

following properties: 
• the sum of its elements has to be equal to 1 for each number 

of jobs present in the server, that is: 
( ) ( ) 1,,

0

=
=

νβα

ν

A
s

N

Q

S

f    [ ]SQ NKs +∈∀ ,0   (20) 

• it has to present a maximum for the number of active VMs 
that is considered the most appropriate. It has to depend on 
the current value of jobs in the server, Qs .  

According to the above considerations, we derive this function 
with a triangular shape. As we will see, for each value of Qs  it 
is exhaustively determined for each set of parameters A, α  and 
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β . The first step is to calculate the temporary function 
( )( )νφ βα ,,A
sQ

 depicted in Fig. 1 as follows: 

• the abscissa of the maximum value, representing the most 
appropriate number of active VMs, is indicated as V, and is 
calculated proportionally to the value of Qs  by using α  as 
the proportionality constant. In order to avoid that V is 
greater than the maximum number of available VMs, we 
derive: 

{ }SNVV ,min ′= ,  where { }QsV ⋅=′ αround  (21) 
• the ordinate of the maximum value is given by A;  
• the abscissa of the left vertex of the triangle, here indicated 

as L, is determined as a fraction of V ′ , by using the 
parameter β : 

{ }{ }1,roundmin −′⋅= VVL β  (22) 
• the abscissa of the right vertex of the triangle, here indicated 

as R, is determined such that the condition in (20) is 
respected, i.e.: 

{ }SNRR ,min ′=  ,     where  LAR +=′ 2  (23) 

Finally, in order to satisfy (20), we calculate ( ) ( )νβα ,,A
sQ

f   from 
( ) ( )νφ βα ,,A
sQ

 by normalizing it with its sum. 
Let us note that, as it is easy to argue, the values of the 

parameters A, α  and β  for each value of VMPC, as well as 
the value of γ , strongly influence the server performance. For 
this reason in Section VI we will set an optimization problem 
that allows us to calculate the best set of parameters for each 
VMPC that minimizes the server management cost while 
respecting the SLA with the customers. 

VI. NUMERICAL RESULTS 
In this section we derive some numerical results by applying 

the proposed analytical model to a case study. We focus on a 
specific server of a DC that runs VMs to provide the same 
service to all the jobs loading the server. Let the mean service 
duration of a job be equal to one slot, and the maximum number 

of VMs that can run on that server simultaneously equal to 
30=SN . Moreover, we assume that the maximum queue length 

of jobs waiting to be served by the considered server is 60=K .  
As regards the time variability of the VMPC, we assume that 

it can have two values, i.e. 1 PU, and 3 PUs, characterizing low-
price and high-price periods, both with a mean duration of 6 
slots. Therefore, assuming that an active VM causes a power 
consumption of 23.3 W, the SBBP modeling the VMPC is given 
by: { }pricehighpricelowP ,)( =ℑ , { }9.69,3.23)( =ℵ P PU, and 









=

6561
6165)(PQ ,      








=

10
01)(PB  (24) 

Let 100=℘BKP  PUs be the cost to run a VM on an external 
backup server. 

As far as the job arrival process is concerned, as in [9] we 
consider a Poisson process truncated in the range [0,30], i.e. 

[ ]30,0)( =ℵ A , with a mean value of 15 arrivals per slot. Finally, 
we assume that the SLA with the customers is on the mean 
response time, reqT . In order to analyze the impact of the delay 
tolerance expressed by customers by the SLA on the 
management cost, we compare the management cost for the two 
cases of the SLA parameter reqT  equal to 2 and 6 slots.  

In order to choose the best set of parameters A , α , and β  

that characterize the decision function ( )ν)(RAC
sQ

Γ  for each of the 
two VMPC periods (low and high price), and the parameter γ  
that characterizes the EWMA filter, we have used a genetic 
algorithm, obtaining the parameter set listed in Table I. 

Figs. 2 and 3 show the pdf of the number of active VMs for 
the two considered target values of reqT , also analyzing the 
periods of low and high VMPC, separately. As expected, we can 
notice how, thanks to the application of the proposed price-
aware resource allocation policy, the VMs are more likely active 
when the VMPC is low. The peaks that are present on the right 
of Figs. 2a and 3a, and consequently in Figs. 2c and 3c, are due 
to the exigency of using a higher number of active VMs 
immediately after the VMPC changes from high to low until the 
short-term steady-state is not reached. Moreover, comparing 
plots in Fig. 2 with plots in Fig. 3 we observe that a looser bound 
for the mean response time (i.e. 6=reqT ) allows the use of a less 
number of active VMs during high-price periods (see Figs. 3b 
vs. 2b), so a management cost reduction. 

Finally, in order to analyze the gain obtained with the price-
aware  policy on the management cost, in Table II we have 
showed the mean number of VMs and the management cost 
indices comparing the case the RAC uses the proposed 
allocation strategy with the following two cases: 1) VMPC 
unaware policy, when the allocation strategy does not take care 
of the VMPC variability; 2) VM always on, when all the VMs 
are maintained active, independently of the system population.  

First we can observe that, when the proposed strategy is 
applied, the mean number of active VMs, { }VME , is higher 
when the SLA is more stringent. Instead, for the VMPC unaware 

(a) SNV <′  (b) SNV ≥′  
Fig. 1: Triangular shaped decision function 
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0.127 0.959 0.934 
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strategy the mean number of active VMs is equal to the mean 
load, i.e. 15 arrivals/slot. This means that the queue works with 
a unitary utilization coefficient, due to the fact that the decision 
probability function is able to avoid both losses and VM 
inactivity periods. The last column of Table II represents the 
worst case in terms of energy consumption, i.e. when all the 30 
VMs are maintained on for any state of the server population. 
The second row of the same table demonstrates the strength of 
the proposed strategy, saying that we achieve a power saving 
gain greater than 53% for 2=reqT  , reaching 57% for 6=reqT , 
as compared with the “VM  always on” strategy. Moreover, 
analyzing the impact of the price awareness, we can notice that 
the proposed policy has a power saving gain in the two SLA 
cases of about 7% and 14% over the VMPC unaware policy. The 
last two rows present the composition of the whole management 
cost, and explain the way in which the proposed strategy 
achieves the maximum gain. It is evident that the gain is realized 
by introducing some risk of not finding available primary 
resources, but this is strongly compensated by the obtained high 
power saving. 

VII. CONCLUSIONS 
In this paper we propose an analytical model to support the 

design of price-aware management policies of servers in 
virtualized data centers. A management policy is then proposed 

and numerically analyzed with the proposed model in a case 
study, demonstrating that it achieves great power saving in 
respect to a similar price-unaware policy and the worst-case 
policy when all the VMs are maintained on, whatever the server 
load. It has been also evaluated how the power saving gain 
increases for delay-tolerant jobs, that is jobs that have no 
stringent requirements on the mean response time. 
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TABLE II. PERFORMANCE COMPARISON 
 Proposed VMPC unaware VM always on 
 2=reqT  6=reqT  2=reqT 6=reqT  2=reqT 6=reqT

{ }VME  15.03 14.62 15.00 15.000 30.00 

{ }TOTCE  651.06 600.94 698.99 698.99 1398.00 

{ }PrimCE  651.06 567.98 698.99 698.99 1398.00 

{ }bckCE  0.00 32.97 0.00 0.00 0.00 

 
(a) Low-price periods (b)  High-price periods (c) Infinite horizon 

Fig. 2: Pdf of the number of active VMs for a required mean response time of 2 slot 

 
(a) Low-price periods (b)  High-price periods (c) Infinite horizon 

Fig. 3: Pdf of the number of active VMs for a required mean response time of 6 slot 
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