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Abstract— The network function virtualization (NFV) para-
digm has gained increasing interest in both academia and indus-
try as it promises scalable and flexible network management and
orchestration. In NFV networks, network services are provided
as chains of different virtual network functions (VNFs), which are
instantiated and executed on dedicated VNF-compliant servers.
The problem of composing those chains is referred to as the
service chain composition problem. In contrast to centralized
solutions that suffer from scalability and privacy issues, in this
paper, we leverage non-cooperative game theory to achieve a low-
complexity distributed solution to the above-mentioned problem.
Specifically, to account for selfish and competitive behavior of
users, we formulate the service chain composition problem as
an atomic weighted congestion game with unsplittable flows and
player-specific cost functions. We show that the game possesses a
weighted potential function and admits a Nash equilibrium (NE).
We prove that the price of anarchy is upper-bounded, and also
propose a distributed and privacy-preserving algorithm which
provably converges toward an NE of the game in polynomial
time. Finally, through extensive numerical results, we assess the
performance of the proposed distributed solution to the service
chain composition problem.

Index Terms— Game theory, congestion games, service
chaining, network function virtualization (NFV).

I. INTRODUCTION

W ITH the enormous increasing of network traffic during
the last few years, and because of the inflexible and

ossified structure of the Internet, Telco Operators are introduc-
ing a large variety of proprietary hardware appliances (middle-
boxes) to provide network functions such as firewalls, Deep
Packet Inspectors, Network Address Translator, load balancers,
Quality-of-Service (QoS) analyzers, etc. However, deployment
of specialized hardware devices for each new network function
is very expensive and does not scale, thus causing drastic con-
sequences in both capital expenditures (CAPEX) and operating
expenditures (OPEX) [1], and making the network purpose-
built and optimized for a few static services only [2], [3].
Recently, Network Function Virtualization (NFV) [4], [5]
has been identified as a valid alternative to hardware and
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vendor-specific middle-boxes. In fact, by decoupling net-
work functions from the physical equipment on which they
run, NFV introduces software-based middle-boxes running on
cheaper Commercial-Off-The-Shelf (COTS) servers [6] placed
in data centers and network nodes. Therefore, NFV has gained
a lot of interest in both academia and industry as it promises to
reduce CAPEX and OPEX by making networks more scalable
and flexible, and leading to increased service agility.

At the same time, Software Defined Networking (SDN),
introduced to decouple network control from data forward-
ing [6], offers the possibility of applying different poli-
cies [7], [8] for traffic steering through appropriate network
functions, by programmatically configuring forwarding rules
implemented in a centralized node called the SDN Controller.

The application of SDN to a network that uses the NFV
paradigm represents a major shift in network design, as recog-
nized by both manufacturers and operators [9]–[11]. In fact,
it gives the possibility of running network functions within
virtual machines (VMs), which can be migrated and managed
by using policies inherited from data center technologies,
and steering traffic through arbitrary routes based on user
requirements, i.e., along routes which are neither necessarily
shortest paths, nor even loop-free [12], [13].

Recent market analysis and forecasts [14] have shown how
the SDN/NFV market is expected to exponentially grow in the
next years.

As an evidence, a big standardization work has been done
in the last years by the ETSI NFV group to develop standards
for a reference architecture [15], a management and orches-
tration (MANO) framework [16] and some use cases [17].
Moreover, a lot of research activities have been carried out in
both academia and industry to deploy the SDN/NFV paradigm.

One of the most critical aspects that is slowing the spread
of the SDN/NFV paradigm is the service-chaining task, term
used “to describe the deployment of Virtual Network Func-
tions (VNFs), and the network operator’s process of specifying
an ordered list of such functions that should be applied to
a deterministic set of traffic flows” [18]. The problem of
composing an ordered chain of VNFs can be referred to as
the Service Chain Composition problem [18]. More specif-
ically, this problem regards the decision about the number
of instances that have to run on the network for each VNF
composing a Network Service (NS), the VNF Servers where
to execute these instances, and their concatenation to achieve
the service chains for each traffic flow in the network. This
has to be achieved taking into account the users’ requirements
in terms of both QoS parameters and costs to pay.
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With rapid increases in traffic volume, traffic variety, and
service requirements, Telco Operators need a flexible, agile
and scalable method to solve this problem. To this purpose,
a great amount of work has been done in the last few years.
However, the most of existing literature recognizes that it is
an NP-hard problem, and proposes sub-optimal centralized
solutions that aim at optimizing a cost function from the Telco
Operator point of view. Nevertheless, previous work lacks at
least in the following aspects that, indeed, are of extreme
importance to the broad market penetration of the SDN/NFV
paradigm:

1) Centralized solutions are mainly used to optimize
network-wide cost functions. Whilst they lead to a social
optimum, those solutions often do not consider user-
specific and individualistic behavior of network users.
Accordingly, they do not capture the non-cooperative
behavior among competitive and individualistic entities,
which aim at their own benefit instead of a social
one;

2) To calculate a centralized solution, full knowledge w.r.t.
the network state and system parameters is required. It
means that the network has to be continuously monitored
and each user is required to disclose its private infor-
mation that is relevant to calculate their cost functions.
While private and local information can be disclosed
in some applications, there are several scenarios where,
for privacy issues, the disclosure of private and local
information is an unrealistic and unfeasible assumption
as users cannot (or just do not want to) disclose their
own private information, such as their cost functions
or their system parameters, to other entities in the
network. A classic example is that of auctions where
users (i.e., the bidders) are expected to compete, and not
to share, with other bidders their monetary budget, their
private valuation of the auctioned good, and policies
they intend to apply to decide the best trade-off between
costs and performance [19]. Accordingly, to design an
efficient centralized solution in such scenarios is a hard
task;

3) Finally, due to the NP-hardness of the VNF composition
problem, centralized approaches do not well-scale and
require large computational times to converge to an
optimal solution. Accordingly, those approaches fail
either when the number of variables in the problem is
large, or when dealing with dynamic scenarios where
the traffic rapidly varies in time and users dynamically
access the network. Even though sub-optimal solutions
have been proposed in the literature [3], [20]–[22], those
approaches mainly rely on the assumption that full-
knowledge is available. An assumption which is not
realistic in many application scenarios such as the ones
in the above.

With all this in mind, in this paper we aim at proposing
a game-theoretic model that approaches the Service Chain
Composition problem in a distributed way. To account for the
individual and selfish behavior of network users, we exploit
non-cooperative game theory. Specifically, contrary to the
classical approach that entirely concentrates this task to the

Orchestrator [16], [23], [24], here we provide a distributed
solution to the problem, and allow network users to play a
congestion game to individually find the best service chain
of VNF instances that accommodates their individual require-
ments. We consider NFV-specific network requirements and
characteristics, such as the congestion level on VNF servers,
the latency incurred by traffic flows, and the price charged by
VNF Servers to execute VNFs.

In more detail, to model the congestion level experienced by
users on the VNF Servers of the chain, we formulate the prob-
lem as an atomic weighted congestion game with unsplittable
flows and player-specific cost functions, which also allows us
to account for user asymmetries such as different locations in
the network and different transmission rates. We show that
the congestion game admits a weighted potential function.
We also show the existence of a Nash Equilibrium (NE) and
that the Price of Anarchy (PoA) is bounded by 1

2 (3 + √5).
This result is of practical importance as it provides an upper-
bound on the performance degradation generated by distrib-
uting the service chain composition problem. We propose an
algorithm which provably converges in polynomial time to a
NE of the game, and can be implemented in a fully distrib-
uted fashion while preserving the privacy of network users.
Finally, through experimental results, we assess and verify
the effectiveness of the proposed distributed service chaining
algorithm.

The remainder of this paper is organized as follows. Related
work is presented in Section II. In Section III, we describe
the reference system. A game-theoretic model of the Service
Chain Composition problem is formalized in Section IV,
and its implementation aspects are discussed in Section V.
Numerical results are illustrated in Section VI, and an exper-
imental proof-of-concept is presented in Section VII. Finally,
in Section VIII conclusions are drawn.

II. RELATED WORK

Service chaining is one of the most challenging problems
in SDN/NFV network deployment. It aims at routing traffic
flows according to a service graph so that complex network
services can be implemented in software according to the
NFV paradigm, thus avoiding any need to make changes
to the network at the hardware level. The challenge is to
provide Telco Operators to dynamically include VNFs in a
network-processing path by addressing requirements for both
optimization of the network, through better utilization of
resources, and revenue, through the provisioning of services
that are tailored to the customer context. In this regard, [17]
describes the use case “VNF forwarding graph”, and show
how traditional physical appliance forwarding graphs are less
efficient than VNF forwarding graphs in terms of resilience,
flexibility, complexity and deployability. Although service
chaining has already been enabled by recent SDN architecture
proposals [25], the efficient composition of those service
graphs is of crucial importance. Therefore, optimal and sub-
optimal solutions to the service chain composition problem
have been proposed in the literature. Due to its similarity
with the Virtual Network Embedding Problem (VNEP) [26]
where virtually orthogonal networks are instantiated on top
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of a shared network infrastructure, many optimal solutions
rely on approaches proposed to solve the VNEP. For example,
Integer Linear Programming (ILP) [22], [27], [28] and Mixed
ILP (MILP) [29] formulations derived from the VNEP have
been widely exploited to optimize a variety of network per-
formance metrics and provide solutions to the service chain
composition problem, while a MILP formulation for a coor-
dinated node and link mapping onto the underlying network
infrastructure is proposed in [30].

Nevertheless, while optimal solutions are desirable, this is
often obtained at a high cost in terms of both computational
complexity. In fact, those solutions result in NP-hard problems
that expose significant scalability issues. Therefore, unless
static scenarios and long optimization times are considered,
optimal solutions cannot be derived in large networks due to
the combinatorial nature of the problem.

As a workaround, the literature proposes some sub-optimal
approaches to the service chain composition problem. For
example, [31] introduces a greedy approximation solution
to the problem of placing a minimum number of network
functions under minimum performance guarantee. Similar
approaches have been considered in [20], while heuristics
[21], [22] and approximations [3] have also been proposed.
Nevertheless, while the above approaches are able to provide
sub-optimal solutions in polynomial time, they require full-
knowledge of network parameters such as user-specific and
private parameters. That is, to obtain a solution, each user
should partially or completely disclose its private and local
parameters to the centralized entity.

Under the above assumption, centralized approaches fail
as the lack of perfect information does not allow to obtain
an efficient and globally optimal solution. This is because
distributed mechanisms should be adopted as they are well-
suited to easily tackle the above requirements and pro-
vide efficient solutions to the service chain composition
problem.

Moreover, it is worth noting that network users are
often competitive entities that selfishly aim at maximizing
their own benefits or minimizing costs and, in almost all
real-world applications, they are not aware of the iden-
tity of the other users or how many users are accessing
the network. Therefore, a non-cooperative game-theoretic
approach can be effectively used to model such a com-
petitive scenario under the above privacy requirements. A
framework that is well-suited to provide a distributed VNF
service chain composition mechanism is that of congestion
games.

Congestion games have been proposed in many networking
scenarios thanks to their ability to capture congestion of
network resources, and to model a hierarchical structure like
the one distinctive of the VNF chaining problem. Also,
congestion games have been shown to possess some interesting
properties. For example, the existence of potential functions
in particular classes of potential games has been proven in
[32] and [33]. By exploiting the above properties, in [34] and
[35] centralized polynomial algorithms that provably converge
to a NE of the game are proposed. However, the above
approaches do not consider either user-specific functions, or

Fig. 1. Network scenario.

Fig. 2. Reference NFV System Architecture.

cannot be implemented in a privacy-preserving and distributed
fashion as they require the whole knowledge of the network
configuration, e.g., the network graph and the current VNF
chaining configuration. Therefore, they cannot be used to solve
the considered service chaining problem, which instead is the
objective of this paper.

III. THE REFERENCE SYSTEM

As shown in Fig. 1, in this paper we consider a network
owned by a Telco Operator whose objective is to provide
its customers with network services following the SDN/NFV
approach. To this purpose, together with some legacy nodes, in
the network there are SDN switches, as well as NFV-compliant
nodes here referred to as VNF Servers. The former, according
to the SDN paradigm, are able to steer traffic according to
some rules received from a remote SDN Controller. The latter
follow the specifications in [36], with an architecture like the
one shown on the left part of Fig. 2. More specifically, in the
VNF Servers a virtualization layer is installed above the com-
puting, storage and network hardware resources to have the
possibility of running instances of VNFs in virtual machines
(VMs), applying the same virtualization technologies used in
data centers and clouds. All the above nodes constitute the
NFV Infrastructure (NFVI).

Traffic flows are generated by the Telco Operator network
customers, which access the Telco Operator network through
edge nodes. Each customer can generate different traffic flows
and, for each of them, it requests a network service with
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a specific level of quality, according to the type and the
importance of the flow.1

Any traffic flow is characterized by its ingress edge node,
its edge egress node, and the required network service with
the associated level of quality. A network service (NS) can
be either constituted by a single VNF, or composed by a
chain of VNFs. Without losing in generality and to simplify
readability, in the following we will refer to a traffic flow as
either a single traffic flow, or an aggregate of traffic flows
that, although generated by different customers or different
applications of the same customer, have the same ingress and
egress edge nodes, and require the same NS with the same
level of quality.

The key role of orchestration and resource management
in the system shown in Fig. 1 is played by the Network
Orchestrator. In order to be compliant with the Management
and Orchestration (MANO) specifications defined for NFV
networks in [16], its architecture is as the one shown on
the right part of Fig. 2. The main target of the Network
Orchestrator is to instantiate VMs to run VNFs on the available
VNF Servers, decide the amount of resources that servers
have to reserve to each VNF in terms of computing, storage
and network resources, and arranging the NFVI resources in
such a way to provide customers with the required network
services with the relative expected quality. More in depth,
the NFV Orchestrator (NFVO) block within the Network
Orchestrator is responsible of the orchestration of the NFVI
resources, fulfilling the Resource Orchestration functions and
the Network Service Orchestration functions, the last regarding
the lifecycle management of network services.

For network services composed by a single VNF, the Net-
work Service Orchestrator decides how many VNF instances
have to be executed in the network, and the VNF Servers
that have to run them. This is achieved by interacting with
the Virtualized Infrastructure Manager (VIM) blocks that are
in charge of managing the NFVI resources. Likewise, in the
case of more complex network services that are realized as
chains of different VNFs, the Network Service Orchestrator
decides the number of instances for each component VNF,
and their placement. In addition, it is in charge of the Service
Chain Composition task, which consists in composing network
services by chaining the running VNF instances. Of course,
due to the presence of different instances for each VNF, many
chains can coexist to provide different customers with the same
network service.

This task is challenging because it constitutes a very hard
optimization problem with many constraints. Therefore, a
complex and centralized optimization algorithm to support

1For example, as compared to video streaming flows, email traffic flows
require a different network service, and even two different video streaming
flows may require different levels of quality, according to their importance
and the willingness of the customers to pay no more than a proper price.
Network services with the associated levels of quality can be requested by
single customers, typically when customers are the owners of enterprise
or residential private networks. Alternatively, when many customers enter
the network through an access network owned by a third party provider,
e.g., a 3G/4G mobile access network, network services provided to network
customers are predefined by the access network provider. In some cases, traffic
can be divided in classes and a network service is assigned to each traffic class.

Fig. 3. Illustrative example of Network Service Brokers and their scopes.

the NFVO in its decision process is needed to satisfy user
requirements while minimizing a given cost function. An
additional related issue is that the NFVO, in order to achieve
this task, should know all the information regarding each traffic
flow, some of which can be private and sensitive.

The target of this paper, which will be addressed in the
following section, is to define a game that allows distributing
this task, in such a way that both the computational scalability
and customer privacy issues are addressed.

To this purpose, we introduce a new entity, the Network
Service Broker (NSB), whose instances work as players of the
game we will define in the following section. An NSB instance
is a software application that covers a delimited portion of
network, which in the following will be indicated as NSB
Scope.

An instance of NSB can be run either 1) on user terminals,
2) on Customer Premise Equipments (CPEs) that are used
to access the Internet from a private network (e.g. the home
router in a residential local area network, or the enterprise
router in a business environment), or 3) on the access network
of third party providers, for example in the case of 3G/4G
mobile access networks. Accordingly, the NSB works for the
flows generated from either the same terminal (case 1), the
same private network (case 2), or the same access network
(case 3). In particular, an NSB starts a thread for each flow to
be managed. All NSB threads that request the same network
service and belong to different NSB Scopes will compete with
each other as players of a non-cooperative game.

Fig. 3 shows an example highlighting two NSB Scopes, S1
and S2, the first with three flows and the second one with
only one flow. Therefore, three different NSB threads run in
the NSB Scope S1, while one NSB thread works in the NSB
Scope S2. Since the flow coming from S2 requires the same
NS of one of the flows from S1, the two threads labeled as
NSB3 in Fig. 3 (one in each NSB Scope) compete with each
other as players of the same game.

IV. GAME MODEL

In this section, we formulate the Service Chain Compo-
sition problem as a congestion game [37]. Specifically, in
Section IV-A, we present the notation used in the paper
and the relevant assumptions that will be used to define
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TABLE I

NOTATION

the game-theoretic framework. We show that the congestion
game admits both a weighted potential and a NE that can be
computed in a fully distributed fashion by exploiting unilateral
best response dynamics in a finite amount of iterations. A
brief description of the congestion games will be provided in
Section IV-B. Then, in Section IV-C we derive both a closed-
form weighted potential function and an upper bound for the
price of anarchy (PoA).

A. Model Notation and Assumptions

Let us introduce some notation and the assumptions needed
to model the system described so far. All relevant system
parameters are summarized in Table I.

In this paper, we focus on one Network Service (NS)
out of those in the NS Catalog located in the Network
Orchestrator. The NS can be modeled as an NFV forwarding
graph consisting of a chain of VNFs. Throughout the paper,
the considered network service will be denoted as F and the
NSB threads will be identified with their corresponding NSB.2

Accordingly, we have that F = {1, 2, . . . , F} is the considered
service chain, defined as an ordered sequence of VNFs, where
F is the last VNF that has to be executed to complete the NS.

The game will be defined among all the NSBs that are in
charge of the management of F . We assume that V dedicated
VNF Servers are deployed in the network to execute the
Virtual Network Functions (VNFs). Let V = {1, 2, . . . , V }
be the set of the available VNF Servers.

For each server v ∈ V , let Fv ⊆ F be the (sub)set of
VNFs provided by the server v. Accordingly, for each VNF
f ∈ Fv , let pv, f be the VNF price to execute an instance of
the VNF f on the server v. In the following, and without loss
of generality, we will assume that all servers in V have all the
VNFs in F , i.e. Fv = F . However, our model also applies to
the case when Fv ⊂ F for some v ∈ V .

2Note that the more general case where many network services are provided
to network users can be tackled with the same approach presented in this paper
by exploiting the orthogonality provided by network slicing. This allows us
to virtually create independent network and computing slices for each service
chain without mixing traffic generated by NSB threads requesting different
chains.

Let N be the set of the NSBs in the network whose flows
request the network service F , and N be the cardinality of
N . Since network customers are located at different areas of
the network, for each NSB i ∈ N , we define a 2-tuple (si , ti ),
where si and ti are the ingress and the egress nodes of the
flow managed by NSB i ∈ N , respectively. Also, let λi > 0
be the bit rate of the flow handled by the i -th NSB.

To take network latencies into account, let D(v−v) =(
d(v−v)
v ′v ′′

)
v ′,v ′′∈V

be the inter-server latency matrix containing

the latencies between all VNF Servers involved in the Network
Service F . Analogously, let D(in−v) =

(
d(in−v)

i,v

)
i∈N ,v∈V

be the ingress-to-Server latency matrix which contains the
latencies between all ingress nodes and VNF Servers. Finally,
let D(v−out) =

(
d(v−out)
v,i

)
v∈V ,i∈N

be the Server-to-egress

latency matrix containing all latencies between VNF Servers
and egress nodes.

For the sake of readability, and to simplify the notation, in
the following we omit all superscripts and use the uniform
notation da,b to identify the latency between nodes a and b,
where a, b can be either servers in V , ingress or egress nodes.
Also, without loss of generality, we consider the case where,
for any two distinct servers v ′, v ′′ ∈ V , there always exists a
path in the network that interconnects v ′ to v ′′ (and viceversa).

We assume that the NS is composed by a chain of F VNFs
and that the available VNF Servers are V . Accordingly, the
number of possible chaining combinations is |W | = V F . Let
W be the set containing all possible NS configurations, and
let wi ∈ W be the NS configuration chosen by the NSB
representing the flow i ∈ N . In the following, we refer to this
NSB as the i -th player, and we use terms NSB and player
interchangeably. In our model, the NS configuration wi is the
F-tuple wi = (wi (1),wi (2), . . . , wi (F)), where wi ( f ) ∈ V
is the server which has been chosen by the player i to execute
the function f ∈ F .

For each player i ∈ N and any given NS configuration wi
chosen by i , the price of the NS configuration can be written
as

c(P)
i (wi ) =

F∑
f=1

pwi ( f ), f (1)
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Similarly, the overall latency experienced by the flow man-
aged by the player i when choosing the NS configuration wi
can be expressed as

c(T )
i (wi ) = di,wi (1) +

F∑
f=2

dwi ( f−1),wi ( f ) + dwi (F),i (2)

where the term di,wi (1) ∈ D(in−v) is the latency between node
si , representing the ingress node of the flow managed by player
i , and the server wi (1) ∈ V , the term dwi ( f−1),wi ( f ) ∈ D(v−v)

is the inter-server latency between servers wi ( f − 1) and
wi ( f ), and the term dwi (F),i ∈ D(v−out) is the latency between
the server wi (F) and the egress node of the i -th NSB’s flow.

Finally, since different flows can use the same instance of
the VNF f , they will experience a congestion level due to the
load on the server where f is running. Let w−i be the set of all
the NS configurations chosen by the NSBs in N \{i}, that is,
w−i = (w1, w2, . . . , wi−1, wi+1, . . . , wN ). Furthermore, let
� f (wi , w−i , v) be the set of NSBs in N which have chosen
the server v ∈ V to receive the function f ∈ F . Let us indicate
the NS configuration chosen by the NSB j as w j , and the set
of the NS configurations chosen for all the NSBs requiring
the considered network service F as (wi , w−i ) ∈ W N , where
W N stands for the N-ary Cartesian power of the set W . In a
formal way, we have

� f (wi , w−i , v)

=
{

j ∈ N : w j ( f ) = v,w j ( f ) ∈ w j , w j ∈ (wi , w−i )
}

(3)

Accordingly, we have that the congestion level experienced
by the flow corresponding to the NSB i for function f on the
chosen server wi ( f ) is

δ f (wi , w−i ) =
∑

j∈� f (wi ,w−i ,wi ( f ))

λ j (4)

where δ f (wi , w−i ) = δ f (w j , w− j ) if w j ( f ) = wi ( f ).
By exploiting (4), we have that the overall congestion level

experienced by the flow of player i ∈ N on the whole
service chain when the other players have chosen the NS
configurations described by w−i , is

c(C )
i (wi , w−i ) =

F∑
f=1

δ f (wi , w−i ) (5)

Accordingly, the total cost experienced by each NSB i ∈ N
can be expressed by the following cost function:

Ci (wi , w−i )=c(C )(wi , w−i )+γi

(
c(T )

i (wi )+βi c
(P)
i (wi )

)

(6)

where γi and βi are two non-negative weighting parameters
decided by the player i .

For the sake of illustration, the considered service chain
model is illustrated in Fig. 4. Specifically, we show an illus-
trative system configuration where F = 4 VNFs compose the
NS F = {1, 2, 3, 4}, V = 3 VNF Servers are in the network,
and N = 3 players play the game in order to choose the NS
configuration for their flows. As shown in Fig. 4, some servers,
highlighted with dashed border lines, do not provide one or

Fig. 4. Service Chain Model with F = 4, V = 3 and N = 3.

Fig. 5. Illustrative example of a possible service chain configuration.

more functions in the chain. Also, it may happen that some
players in N share the same ingress and/or egress nodes, i.e.,
NSBs i = 2, 3 that have the same egress node t2 = t3, even
if they have different ingress nodes s2 �= s3.

Moreover, in Fig. 5, we show an illustrative example where
we represent how service chaining is performed in the consid-
ered scenario. The service chains chosen for the three flows,
w1, w2 and w3, are represented by solid, dotted and dashed
lines, respectively. As shown in Fig. 5, flows 1 and 2 share
the same server v2 to execute the VNF 1, and all of the three
flows share server v2 to execute the VNF 4. Therefore, from
(4) we have that the server load at v2 w.r.t. VNF 1 is equal to
λ1+λ2. Instead, the server load on the same server w.r.t. VNF
4 is λ1 + λ2 + λ3, while the server load at v3 w.r.t. VNF 1 is
equal to λ3, as only flow 3 has selected v3 to execute VNF 1.

B. Congestion Games in a Nutshell

Congestion games are a particular class of games where a
set N of players compete with each other over a given finite
set R of resources. In such games, which were first introduced
by Rosenthal [37], each player’s strategy consists in selecting
a resource r ∈ R . This is done taking into account that the cost
cr (nr ) of selecting such resource, which can also be referred
to as the congestion over resource r , depends on the number
nr ≤ N of players in N which have selected resource r .
Congestion games are well-known to be potential games [37].
In fact, they admit a potential function, which is a real-valued
function that tracks the changes in the cost functions of players
which unilaterally deviate from a strategy to another.

A particular extension of congestion games, which is also
referred to as weighted congestion game, assigns a weight
λi to each player i ∈ N such that the cost functions are
player-specific functions of the form ci,r (nr , (λi )i∈N ). The
latter formulation finds application in many wired and wireless
network scenarios [38]–[40] where weights can be associated
to the traffic generated by network users, e.g., transmission
data rate, and player-specific cost functions can be used to
capture channel-state information and different positions of
users in the network.
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ci,wi ( f ), f =

⎧⎪⎨
⎪⎩

δ f (wi (1), w−i )+ γi
(
di,wi (1) + βi pwi (1),1

)
if f = 1

δ f (wi ( f ), w−i )+ γi
(
dwi ( f−1),wi ( f ) + βi pwi ( f ),1

)
if 1 < f < F

δ f (wi (F), w−i )+ γi
(
dwi ( f−1),wi ( f ) + dwi ( f ),i + βi pwi (F),1

)
if f = F

(7)

An important aspect which should not be neglected in
congestion games is related to the efficiency of equilibrium
points w.r.t. an optimal solution. To this purpose, the concept
of price of anarchy (PoA) has been considered. Specifically, if
the objective of players is to minimize a given cost function,
the PoA is defined as the ratio between the cost experienced by
all players at the worst NE of the game and that achieved by
an optimal centralized solution. Intuitively, the PoA measures
the worst-case performance of the game. A unitary PoA means
that the NE is also optimal. Instead, the higher the PoA, the
worse the efficiency of the NE.

C. Game Formulation

Each NSB is a player and its objective is to minimize the
cost function defined in (6) for the flows it manages. In this
section we will define the game that the NSBs play to create
service chains for their flows.

Accordingly, we define the weighted congestion game as
the tuple

G =
(

N , (λi )i∈N , (V f ) f ∈F , W N , (ci,v, f )i∈N ,v∈V , f ∈F

)

where N is the set of players, the weights are the bit rates λi

of the relative flows, the set V f of servers which provide VNF
f ∈ F corresponds to the set of resources that can be selected
by players, and W are all the possible NS configurations that
can be chosen by the player i ∈ N . In the following of this
paper, we will refer to the VNF Servers as the resources
of the congestion games. Finally, for each function f ∈ F
and resource wi ( f ) ∈ V f chosen by player i to execute
VNF f , ci,wi ( f ), f is the per-resource cost function which
is defined in (7), as shown at the top of this page, where
δ f (v, w−i ) is defined in (4) and represents the server load at
VNF Server v ∈ V w.r.t. VNF f ; wi ( f − 1) ∈ V f−1 is the
server chosen by the player i to provide the flow with the
VNF f − 1; di,wi (1) ∈ D(in−v), dwi ( f−1),wi ( f ) ∈ D(v−v) and
dwi ( f ),i ∈ D(v−out) are the Ingress-to-Server, Inter-server and
Server-to-Egress latencies, respectively.

From (7), shown at the top of the page, it is worth noting
that the cost experienced by each flow to receive a given
function f on a given server v ∈ V f depends on the congestion
level δ f (v, w−i ) at that given server, the latency to reach that
server (which also depends on the server wi ( f − 1) that has
been chosen to execute function f −1), and on the price pv, f

to execute function f on server v.
Accordingly, a strategy for a player i ∈ N consists of

a NS configuration, i.e., a sequence of servers where each
function in F has to be executed. In more detail, we have
that wi = (wi (1),wi (2), . . . , wi (F)) is a strategy for player
i ∈ N , where each wi ( f ) ∈ V f for all f ∈ F . Therefore,
a strategy profile for the game G consists of a tuple w =
(w1, w2, . . . , wN ) ∈ W N such that wi ∈ W for all i ∈ N .

With a more in-depth look at the above weighted congestion
game, we can notice that G is atomic as the traffic is generated
by single applications in the network, is F−layered because
all paths for any 2-tuple (si , ti ) have length exactly equal to F ,
and has player-specific cost functions as (7) varies from a
player to another one. Finally, G is a congestion game with
unsplittable flows since a flow follows a unique path from its
ingress node to its egress node.

Definition 1: A strategy profile (w∗1, w∗2, . . . , w∗N ) ∈ W N is
a Nash Equilibrium if, ∀i ∈ N and ∀wi ∈ W , we have:

Ci (w
∗
i , w∗−i ) ≤ Ci (wi , w∗−i )

that is, (w∗1, w∗2, . . . , w∗N ) is a strategy profile where no player
has incentive to deviate unilaterally.

Definition 2: A weighted potential function for the game G
is a function � : W N → R such that, ∀i ∈ N , ∀wi , w

′
i ∈ W ,

and ∀w−i ∈ W N−1, there exists a vector b = (bi )i∈N such
that

�(wi , w−i )−�(w′i , w−i ) = bi
[
Ci (wi , w−i )− Ci (w

′
i , w−i )

]

(8)
In the following, we first show that game G admits a

weighted potential function, and then we show that it admits
at least a NE.

Theorem 1: The congestion game G admits a weighted
potential function with weighting vector b = (2λi )i∈N given
by

�(wi , w−i ) = 2
∑
i∈N

λi c̃i (wi )+
F∑

f=1

∑
v∈V

[
δ f (wi , w−i )

]2 (9)

where c̃i (wi ) = γi

(
c(T )

i (wi )+ βi c
(P)
i (wi )

)

Proof: Let w−k ∈ W N−1 be the NS configuration (or
strategy profile) chosen by all the players in N except for the
player k. Also, let x and y be two different NS configurations3

in W chosen by the player k. To prove the theorem, according
to Definition 8, we need to show that the following equation
holds

�(x, w−k)−�(y, w−k) = 2λi

(
Ck(x, w−k)− Ck(y, w−k)

)

(10)

From (6), we have that

Ck(x, w−k)− Ck(y, w−k)

=
[
c̃k(x)− c̃k(y)

]
+
∑
f ∈F

(
c(C )(x, w−k)−c(C )(y, w−k)

)

(11)

3Two NS configurations x, y ∈ W are said to be different if there exists at
least one VNF f ∈ F such that x( f ) �= y( f ).
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Let Fx\y = { f ∈ F : x( f ) �= y( f )} be the set of
functions which are executed on different servers when NS
configurations x and y are chosen by the player k. It is
easy to realize that Fx\y = Fy\x . From (5) and (4), we
have that δ f (x, w−i ) = δ f (y, w−i ) for all f /∈ Fx\y . That
is, the congestion level δ f does not vary on those servers
which are selected by the player k in both NS configurations
x and y. On the contrary, it is straightforward to show that
δ f (x, w−i ) �= δ f (y, w−i ) if f ∈ Fx\y . Accordingly, from (4),
(11) can be rewritten as

Ck(x, w−k)− Ck(y, w−k) =
[
c̃k(x)− c̃k(y)

]

+
∑

f ∈Fx\y

⎛
⎜⎝

∑

j∈� f (x,w−k,x( f ))

λ j −
∑

j∈� f (y,w−k,y( f ))

λ j

⎞
⎟⎠

(12)

Now we show that (9) satisfies (8), i.e., the function � is
a weighted potential function for game G. From (9), we have
that

�(x, w−k)−�(y, w−k)

= 2
∑

i∈N \{k}
λ j

(
c̃ j (x)− c̃ j (y)

)

+2λk

(
c̃k(x)− c̃k(y)

)

+
F∑

f=1

∑
v∈V f

[(
δ f (x, w−k)

)2 −
(
δ f (y, w−k)

)2
]

(13)

By assumption, only the player k is changing its strategy
from y to x ; accordingly, we have that c̃ j (x) = c̃ j (y) for

all j �= k. Thus, we have that
∑

i∈N \{k}
(

c̃ j (x)− c̃ j (y)
)
= 0.

Also, recall that δ f (x, w−i ) = δ f (y, w−i ) for all f /∈ Fx\y .
Therefore, (13) can be rewritten as follows

�(x, w−k)−�(y, w−k) = 2λk(c̃k(x)− c̃k(y))

+
∑

f ∈Fx\y

⎡
⎢⎣
⎛
⎝ ∑

j∈� f (x,w−k ,x( f ))

λ j

⎞
⎠

2

−
⎛
⎜⎝

∑

j∈� f (y,w−k,x( f ))

λ j

⎞
⎟⎠

2⎤
⎥⎦

+
∑

f ∈Fx\y

⎡
⎢⎣
⎛
⎝ ∑

j∈� f (x,w−k ,y( f ))

λ j

⎞
⎠

2

−
⎛
⎜⎝

∑

j∈� f (y,w−k,y( f ))

λ j

⎞
⎟⎠

2⎤
⎥⎦

(14)

If the NS configuration is y, for a given server x( f ) with
f ∈ Fx\y , we have that

∑

j∈� f (y,w−k ,x( f ))

λ j =
∑

j∈� f (x,w−k,x( f ))

λ j − λk (15)

as server x( f ) is not used in NS configuration y. Similarly,
when the NS configuration is x , server y( f ) with f ∈ Fx\y
is such that ∑

j∈� f (x,w−k ,y( f ))

λ j =
∑

j∈� f (y,w−k,y( f ))

λ j − λk (16)

as server y( f ) is not used in NS configuration x .

Accordingly, from (4), (15) and (16), we rewrite (14) as

�(x, w−k)−�(y, w−k) = 2λk(c̃k(x)− c̃k(x))

+
∑

f ∈Fx\y

⎡
⎢⎣
⎛
⎝ ∑

j∈� f (x,w−k ,x( f ))

λ j

⎞
⎠

2

−
⎛
⎝ ∑

j∈� f (x,w−k,x( f ))

λ j − λk

⎞
⎠

2
⎤
⎥⎦

+
∑

f ∈Fx\y

⎡
⎢⎣

⎛
⎜⎝

∑

j∈� f (y,w−k ,y( f ))

λ j − λk

⎞
⎟⎠

2

−
⎛
⎜⎝

∑

j∈� f (y,w−k ,y( f ))

λ j

⎞
⎟⎠

2⎤
⎥⎦

(17)

Finally, by expanding the quadratic terms in (17) and
simplifying them, we obtain

�(x, w−k)−�(y, w−k)

= 2λk(c̃k(x)− c̃k(x))+ 2λk

∑
f ∈Fx\y

[
δ f (x, w−k)− δ f (y, w−k)

]

= 2λk

(
Ck(x, w−k)− Ck(y, w−k)

)
(18)

which satisfies (8) with bk = 2λk for all k ∈ N . Therefore,
the proof is concluded.

From Theorem 1, we get the Corollary 1.
Corollary 1: The game G admits at least one NE. The price

of anarchy PoA(G) of game G is upper bounded by 1
2 (3+√5).

Proof: To prove Corollary 1, it suffices to note that finite
potential games always admit at least one NE [37], [41]. From
[42], we have that the PoA of weighted congestion games with
unsplittable flows and affine player-specific cost functions of
the form ci,v, f (ξ) = ai,v, f ξ + bi,v, f is equal to

PoA(G) = 	(G)+ 2+√	(G)(	(G)+ 4)

2	(G)
(19)

where ai,v, f and bi,v, f are user and resource-specific parame-
ters, while 	(G) is a game-specific parameter derived in [42].
Let us notice that, from (7), we have that ci,v, f is an affine
function in the congestion experienced by player flows.

From [42], we have that 	(G) =
maxv∈V , f ∈F ,i, j∈N {ai,v, f /a j,v, f }. Accordingly, since
ai,v, f = a j,v ′, f ′ = 1 for all i, j ∈ N , v, v ′ ∈ V and
f, f ′ ∈ F , we have that 	(G) = 1. Therefore, we obtain that
the PoA of the game G is upper bounded by 1

2 (3 + √5),
which corresponds to the exact PoA of weighted congestion
games with unsplittable flows derived in [43].

From Corollary 1, it follows an important result. In fact,
it guarantees the existence of a pure strategy NE, and also
provides a worst-case performance upper-bound on the achiev-
able performance of the system. While it has been shown that
many weighted congestion games have unbounded PoA [44],
Corollary 1 shows that the PoA of game G is always upper-
bounded by a fixed and finite constant factor. As we will show
in the numerical analysis, however, the PoA of game G is
lower than this bound, and near-optimal performance can be
achieved.

V. ALGORITHMIC IMPLEMENTATION

Even though the existence of a pure strategy NE is an
interesting and important result by itself, how to reach such
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Algorithm 1 Unilateral Service Chain Selection

Inputs: Player i ∈ N , V , p, D(v−v), D(in−v), D(v−out), δA

and the initial configuration wi ;

find shortest path : w∗i ←
findShortestPath(V , p, D(v−v), D(in−v), D(v−out), δA);
if User i is unsatisfied, i.e., w∗i �= wi then

update the NS configuration : wi ← w∗i ;
notify service chain update;
return

equilibrium point in a distributed and efficient way is still an
unanswered question. Accordingly, in this section we illus-
trate a simple, low-complexity and fully-distributed algorithm
which provably converges to a NE of the game G. Specif-
ically, we derive a closed-form upper-bound on the number
of iterations needed to reach the equilibrium, and discuss
the computational complexity of the proposed distributed
algorithm.

To provide the network with a distributed service chain
composition mechanism, we will rely on the following lemma.

Lemma 1 [41, Lemma 2.3] : Every finite ordinal potential
game has the Finite Improvement Property (FIP).

The FIP is a property of those games where players are
allowed to unilaterally update their strategy by selecting a
better one. A sequence of those unilateral strategy updates
is called an improvement path. Lemma 1 ensures that, starting
from any initial strategy profile, every improvement path is
finite, i.e., the number of unilateral strategy updates is finite.
Therefore, Lemma 1 guarantees that the improvement path
always converges to a NE of game G in a finite amount of
iterations.

In many networking applications such as the one we are
considering in this paper, to fast converge to an equilibrium
point is of extreme importance. While the general theory
of [41] shows that convergence to a NE is obtained in a finite
amount of iterations, it does not provide any result on the
number of iterations needed to reach the NE. Accordingly,
in Algorithm 1 we present a low-complexity and distributed
unilateral service-chain composition mechanism; then, we
investigate its computational complexity and show that its
convergence to a NE can be guaranteed in polynomial time
if some mild conditions are satisfied.

To this purpose, let us consider player i ∈ N , and let w =
(wi , w−i ) be the current NS configuration. Furthermore, let
use define p = (pv, f )v∈V , f ∈F and δA = (δA

v, f )v∈V , f ∈F , where

δA
v, f =

∑

j∈� f (w,v)

λ j (20)

represents the congestion level for each function on each server
under NS configuration w.

Algorithm 1 is executed independently by each NSB in
the network. Specifically, each NSB executes a unilateral
strategy update that corresponds to a unilateral service chain
selection. To exploit the FIP, we assume that only one NSB
is allowed to update its NS configuration at any given itera-
tion. Therefore, unilateral service chain composition problem

results in finding the NS configuration that guarantees the
minimum cost when congestion levels on each server are
given by δA. This latter problem can be modeled as a single-
source single-destination shortest path problem. Since our
model is F-layered and has an acyclic structure (cfr. Fig. 4),
the network can be transformed into a directed acyclic
graph (DAG) and the shortest path problem can be solved
by traditional dynamic programming techniques. Accordingly,
the shortest path problem in Algorithm 1 is solved by the
method findShortestPath(). Specifically, this method
tranforms the network into a DAG G = (VG, EG), with
VG = V · F vertices and EG = 2V + V 2(F − 2) edges,
where edge costs are generated according to (7), in which δ f

is substituted by elements in δA. Furthermore, it is well-known
that the complexity of the shortest path problem on DAGs
through dynamic programming is O(EG + VG). Therefore, in
our case, finding the shortest path has complexity O(V 2 F).

In Proposition 1, we provide useful convergence properties
for Algorithm 1.

Proposition 1: For any initial NS configuration, any
improvement path whose improvement steps are generated
according to Algorithm 1 converges in a finite amount of
iterations to a NE. In more detail, the computational com-
plexity of Algorithm 1 is O(N2 F2V 3), i.e., the complexity of
the algorithm is polynomial.

Proof: For the sake of illustration, and without loss
in generality, let us assume that all system parameters are
integer numbers. Let i ∈ N be the player which performs a
unilateral improvement step, and let (wi , w−i ) be an initial
NS configuration such that there exists ω ∈ W such that
Ci (ω, w−i ) < Ci (wi , w−i ), i.e., player i is unsatisfied with
the current NS configuration and wants to update its strategy.
To this purpose, it runs Algorithm 1 and calculates the shortest
path w∗i . Note that any unilateral NS configuration update
generated by Algorithm 1 produces a w∗i which is the best
response, i.e., w∗i = arg minω∈W Ci (ω, w−i ). After the unilat-
eral improvement step generated by Algorithm 1, the cost of
player i has to decrease at least by 1. Accordingly, from (8),
and having in mind that bi = 2λi , we have that

�(w∗i , w−i )−�(wi , w−i ) ≤ −2λi (21)

that is, each unilateral improvement step contributes to a
reduction of at least 2λi in the potential function.

From (9), it can be shown that, for any possible NS
configuration w ∈ W N , the potential function �(w) is always
upper-bounded by

�(w) ≤ 2N Fλmaxcmax + FV N2λ2
max (22)

where λmax = maxi∈N λi and cmax = maxi (maxwi∈W (c̃i (w)))
which, by maximizing the right-hand side, leads to

�(w) ≤ 2N Fλmax(cmax + NV λmax)

≤ 2N Fλ2
maxV (cmax + 1) (23)

From (9), we have that �(w) ≥ 0. Also, from (21) we
know that any unsatisfied NSB i that executes Algorithm 1 will
reduce the potential by a factor higher than or equal to 2λmin,
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where λmin = mini∈N λi . Therefore, the maximum number of
unilateral improvement steps is

2N Fλ2
max V (cmax + 1)

2λmin

It follows that the maximum number of improvement steps

is O(N2 FV λ2
max

λmin
). In general, both λmax and λmin do not

depend on the number of players, servers or functions in the
system. By combining this latter result with the complexity
O(V 2 F) of the method findShortestPath(), we obtain
that the overall complexity of Algorithm 1 is O(N2 F2V 3).
It is worth noting that Algorithm 1 relies on information that
is publicly available (i.e., V , p, D(v−v)) or private (or local)
parameters (i.e., D(in−v), D(v−out)). The only information that
has to be revealed to the NSBs to execute the algorithm
is δA. Accordingly, δA is broadcast by the Telco Operator
to all players in the network after each improvement step.
But, more importantly, the identity and the NS configuration
of other players in the network cannot be directly extracted
from δA. Therefore, since Algorithm 1 does not require any
communication among players, it can be implemented in a
fully-distributed and privacy-preserving way.

Moreover, let us notice that Algorithm 1 is similar to
the Nashify algorithm proposed in [34]. However, while
Algorithm 1 is distributed, Nashify is not intended to be
implemented in a distributed way as it requires full knowledge
of the rates λi generated by all NSBs. Accordingly, to directly
apply Nashify to the scenario we are considering in this paper
is not feasible.

The main steps of the proposed distributed service chain
composition mechanism based on congestion games are as
follows:

1) The Network Orchestrator broadcasts (V , p, d, δA) to
all NSBs. Instead, D(in−v) and D(v−out) are sent indi-
vidually to each NSB i ∈ N . At the beginning, no
NS configurations have been selected. Accordingly, each
δA
v, f ∈ δA is set to zero, i.e., δA

v, f = 0;
2) All NSBs simultaneously execute Algorithm 1 and find

their own NS configuration given that δA
v, f = 0 for all

v ∈ V and f ∈ F . The selected NS configurations are
sent to the Network Orchestrator;

3) The Network Orchestrator updates δA according to the
NS configurations received from the NSB, and broad-
casts it to all NSBs;

4) Each unsatisfied NSB executes Algorithm 1 again.
Accordingly, it unilaterally updates its NS configuration
and sends the new configuration to the Network Orches-
trator;

5) Steps 3-4 are repeatedly executed until all NSBs are
satisfied.

VI. NUMERICAL RESULTS

In this section, through extensive numerical results, we
assess the performance of the congestion game proposed to
solve the distributed service chain composition problem. In
the following, and unless stated otherwise, for each flow
managed by NSB i ∈ N we assume a transmission data rate

λi = 10 Mbit/s and βi = 1. The number of functions in
the chain is set to F = 5, and the price parameter pv, f is
modeled as a uniformly distributed variable that takes integer
values in the interval [1, 100]. Finally, the latency parameters
in the D(v−v), D(in−v) and D(v−out) matrices are generated
according to a Gamma distribution with mean value of 8 ms
and variance equal to 0.004 ms. All the results presented in
the following are averaged over 100 simulation runs.

Accordingly, the performance of the system is investigated
in Section VI-A. In Section VI-B, the convergence rate and
the scalability of Algorithm 1 are evaluated. The adaptabil-
ity and dynamic behavior of the algorithm are assessed in
Section VI-C, and the PoA of the proposed solution is dis-
cussed in Section VI-D.

A. Performance Evaluation

To investigate the impact of the number of VNF instances
on the performance of the system, we consider ξ f ∈ [1, V ]
as a parameter that represents the number of VNF instances
for each function f ∈ F that are instantiated in the network.
In more detail, ξ f = 1 means that VNF f is instantiated
on only one server. Instead, ξ f = V implies that all servers
provide VNF f . In the following, we assume V = 5, and we
consider two scenarios where F = 5 and F = 10; also we
assume that ξ f ′ = ξ f ′′ for all f ′, f ′′ ∈ F . Accordingly, in
Fig. 6(a) we show the per-flow average cost as a function of
ξ f ∈ [1, V ] for different values of the number N of flows and
the number V of servers in the network. Specifically, for any
given NS configuration w, the per-flow average cost is defined
as follows:

C̃ (w) = 1

N

∑
j∈N

C j (w) (24)

By increasing the number of instances of the same VNF,
NSBs are able to select different VNF Servers, which leads to
lower congestion levels. Instead, if the number of instances
is small, NSBs are forced to select the same server, thus
increasing the congestion level on that server. Therefore, in
Fig. 6(a) it is shown that the per-flow average cost decreases as
ξ f increases. It is worth noting that the cost increases when the
number F of functions in the chain increases. In fact, a higher
number of functions leads to longer paths in the network that
eventually results in higher costs c(T )

i and c(P)
i . Furthermore,

Fig. 6(a) shows that an increase in the number N of NSB flows
also causes an increase in the congestion level c(C )

i , which also
corresponds to higher experienced costs.

In Fig. 6(b), we show the per-flow average cost C̃ (w) as
a function of γi for different numbers V of servers, when
βi = 1 and βi = 2. From (6), we have that C̃ (w) linearly
increases as γi increases and, as expected, it also increases as
βi increases as well. Instead, it is interesting to note that, by
increasing the number V of servers, the average cost decreases.
In fact, by increasing the number of servers, NSBs are able
to select different servers, thus lowering the congestion level,
and consequently reducing the corresponding average cost.
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Fig. 6. a) Per-flow average cost C̃ (w) as a function of the number ξ f of
VNF instances; b) Per-flow average cost C̃ (w) as a function of γi .

Fig. 7. a) Scalability of the proposed solution versus the optimal one w.r.t.
the number N of players; b) Scalability of the proposed solution w.r.t. the
number F of VNFs composing the service chain.

B. Convergence and Scalability Analysis

In Fig. 7(a), we compare the scalability of the proposed
algorithm with that of the optimal solution as a function of
the number N of NSB flows for different values of available
servers V . It is shown that the time elapsed to find the optimal
solution is large, and exponentially increases with the number
of players. Instead, our proposed algorithm well scales with
the number N of players and allows the system to reach a NE
in few seconds. Specifically, as shown in Proposition 1, the
scalability w.r.t. the number N of players is O(N2).

Fig. 7(b) shows the scalability of the proposed solution
versus the optimal one w.r.t. the number F of VNFs composing
the service chain for different values of both N and V . Simi-
larly to what we have shown in Fig. 7(a), Fig. 7(b) shows that
the proposed approach well scales with the number F of VNFs
that compose the service chain. Specifically, we have that for
γi = 1, NSBs equally weighs all the contributions in (6).
Instead, when γi = 20, the contribution generated by the two
terms c(P)

i (wi ) and c(T )
i (wi ) is more relevant as compared to

the congestion cost c(C )
i (wi , w−i ). Accordingly, when γi is

large, NSBs are not much influenced by the decisions taken
by others because the dependence of the decisions taken by the
player i on the behavior of the other players is present only in
the term c(C )

i (wi , w−i ). Instead, if γi is small, the cost function
Ci (wi , w−i ) mainly depends on wi . Accordingly, for large
values of the γi parameters, convergence to the NE is attained
in a shorter amount of time. Specifically, from Proposition 1
we have that the convergence rate w.r.t. the number F of VNFs
is O(F2). However, in realistic scenarios, the number F of

Fig. 8. Dynamic evolution of the potential function �(w).

Fig. 9. Dynamic evolution of the potential efficiency function ε(w( j)).

functions in the chain is not large. It means that in many real-
world scenarios the impact of F on the overall complexity is
low if compared to that of V and N .

C. Dynamic Behavior Analysis

To investigate the adaptability of the proposed algorithm,
in Figs. 8(a) and 8(b), we illustrate its dynamic behavior by
showing the evolution of the potential function �(w) for dif-
ferent network configurations and values of the γi parameter.
We assume that the chain is composed by F = 5 VNFs and
each server only provides ξ f = 3 different VNF instances. For
illustrative purposes, we consider a worst-case scenario where
all VNF instances are migrated from a VNF Server to another
one. Accordingly, at iteration indexes t = {20, 40, 50, 75} we
randomly migrate all VNF instances among the available VNF
Servers.

Fig. 8(a) shows that our proposed algorithm is able to
rapidly adapt to network changes in a few iterations and
converges to the NE of the game which is attained when the
potential converges to a minimum. Both Figs. 8(a) and 8(b)
show that the convergence rate for γi ∈ {1, 5} is fast when
the number of players in the network is small. Instead, if the
number of players is large, i.e., N = 100, Fig. 8(a) shows that
such convergence is faster when the value of the γi parameter
is large. On the other hand, Fig. 8(b) illustrates how smaller
values of γi slow down the convergence of the algorithm. This
result has already been identified in Fig. 7(b). That is, higher
values of γi make the impact of congestion on the experienced
cost of less importance if compared to that of latencies and
prices, thus reducing the number of interactions among players
which results in a higher convergence rate.
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Fig. 10. Price of Anarchy as a function of γi .

In any case, as shown by Figs. 8(a) and 8(b), the conver-
gence towards the NE is slow when the number N of players
is large. This stems from the fact that the complexity of the
proposed distributed algorithm is O(N2 F2V 3). Therefore, if
the VNF instances are migrated very frequently, the algorithm
might not be able to reach the NE in large-scale networks.
However, in the following we show that the proposed algo-
rithm is anyway able to provide an efficient NS configuration,
even if a NE has not been successfully reached.

Let us define the potential efficiency function ε as follows:

ε(w( j)) = �(wNE)

�(w( j))
(25)

where w( j) and wNE are the NS configurations at iteration j
and at the NE, respectively. The value of ε(w( j)) at iteration j
represents the efficiency of the current NS configuration w( j).
High values mean that the current NS configuration is highly
efficient and the achieved performance are near-optimal. On
the contrary, low values indicate poor performance.

In Figs. 9(a) and 9(b), we show the dynamic evolution of
the potential efficiency function ε(w( j)) when w( j) and wNE

are calculated as in Figs. Fig. 8(a) and Fig. 8(b). Although,
in some cases, the NE is not reached due to the frequent
VNF migration, the results obtained show that the algorithm
achieves high efficiency after a few iterations even when
N is large. For example, in Fig. 9(b) it is shown that the
algorithm achieves an efficiency of 80% at iteration j = 20,
i.e., when the VNF instances are migrated. It is worth noting
that the complexity of the algorithm when N = 100 is
O(N2) = O(104), therefore in the worst case the algorithm
would reach the NE in ten thousands iterations. In conclusion,
Figs. 9(a) and 9(b) show that, although the convergence
towards the NE is not achieved in those cases where the VNF
instances are migrated very frequently, a few tens of iterations
suffice to reach an efficient NS configuration.

D. PoA Analysis

In this section, we investigate the impact of system parame-
ters on the PoA of the game G. In Fig. 10(a), we show the PoA
when N = 10 as a function of γi for different values of V ,
when βi = 1 and βi = 2. It is shown that the PoA increases
as the value of γi increases. However, it is worth noting that
the PoA does not linearly increases, but it exhibits a concave
behavior that asymptotically converges to some value smaller

Fig. 11. Considered live streaming service chain.

than the upper-bound derived in Corollary 1. Furthermore, it
also increases when a higher number of servers is considered.

Finally, in Fig. 10(b) we show the PoA when V = 5 as
a function of γi for different values of N , when λi = 1
Mbit/s and λi = 10 Mbit/s. Similarly to what has been shown
in Fig. 10(a), the PoA is an increasing function of γi and
converges to an horizontal asymptote. Furthermore, it also
increases with the number of players while it decreases as
the data rate λi decreases.

VII. EXPERIMENTAL ANALYSIS

To assess and validate the proposed framework, we
have considered the SDN/NFV video broadcasting platform
described in [45] as a case study, and implemented it in
Planetlab [46] as a proof-of-concept. The considered platform
enables big/small live streaming content providers to transmit
video flows to either fixed or mobile users, with no need to
deploy a dedicated and expensive data delivery infrastructure.
Each flow generated by any content provider is intercepted by
its access node, and routed towards the video receiver through
a service chain like the one shown in Fig. 11. The service chain
consists of F = 6 VNFs, whose functionalities are detailed
in [45].

The implemented testbed has been realized by using a
Planetlab slice of V = 7 remotely dislocated nodes working
as VNF Servers, and a number ξ f = 3 of simultaneous VNF
instances that are instantiated on the available VNF Servers.
The network has been loaded with N = 80 flows, specifically
30 flows with bit rate λi = 300 kbit/s, 30 with bit rate
λi = 400 kbit/s, and 20 with bit rate λi = 500 kbit/s. For
the sake of simplicity, we assumed symmetric users w.r.t. the
γi parameter, i.e., γi = γ for all i ∈ N . In order to verify the
responsiveness of the proposed algorithm, we have created
some discontinuities in the network behavior, shutting down
one VNF Server at t = 7 seconds, another VNF Server at
t = 16 seconds, and then turning them on again at t = 29
seconds. The VNF instances running in each VNF Server are
listed in Fig. 12, and are indicated by black entries.

In Fig. 13, we show the dynamic evolution of the potential
efficiency function ε(w( j)) for different values of the para-
meter γ . It is shown that the algorithm converges towards the
NE in a few seconds every time the servers are shut down or
turned on again. Also, the algorithm converges faster as larger
values of γ are considered.

Although the implemented testbed is far from covering the
case study of large scale networks, the obtained experimental
results fairly provide an insightful glimpse of how the pro-
posed algorithm can effectively achieve service chaining in
NFV networks.



D’ORO et al.: EXPLOITING CONGESTION GAMES TO ACHIEVE DISTRIBUTED SERVICE CHAINING IN NFV NETWORKS 419

Fig. 12. Allocation table of the considered VNFs.

Fig. 13. Dynamic evolution of the potential efficiency function ε(w( j)).

VIII. CONCLUSIONS

In this paper, a distributed solution to address the Service
Chain Composition problem in NFV networks has been pro-
posed. To capture competitive behavior among network users,
tools from non-cooperative game theory have been exploited.
Accordingly, the problem has been formulated as an atomic
weighted congestion game with unsplittable flows and player-
specific cost functions. It has been proved that the game
is also a potential game and admits a weighted potential
function whose closed form equation has been derived. By
exploiting properties of potential games, the existence of a
NE has been demonstrated. An algorithmic implementation
of the proposed solution has been discussed, and it has been
shown that the proposed algorithm can be implemented in
a distributed and privacy-preserving way. Furthermore, its
scalability has been studied by proving that it converges to
a NE in polynomial time. The efficiency of the proposed
solution has been investigated by showing that the PoA is
upper-bounded. Finally, numerical and experimental results
have assessed the performance and efficiency of the proposed
game theoretic distributed solution.
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