
ARDUINO UNO

Features

Microcontroller: ATmega328
Operating Voltage: 5V
Input Voltage (recommended): 7-12V
Input Voltage (limits): 6-20V
Digital I/O Pins: 14 (of which 6 provide PWM output)
Analog Input Pins: 6
DC Current per I/O Pin: 40 mA
DC Current for 3.3V Pin: 50 mA
Flash Memory 32 KB (ATmega328)

 of which 0.5 KB used by bootloader
SRAM: 2 KB (ATmega328)
EEPROM: 1 KB (ATmega328)
Clock Speed: 16 MHz

Digital I/O

Digital pins on an Arduino board can be used for
general purpose I/O via pinMode, digitalRead and
digitalWrite functions.

Arduino (Atmega) pins are by default inputs, so they
don't need to be explicitly declared as inputs with
pinMode. Pins configured as inputs are said to be in a
high-impedance state. One way of explaining this is that
input pins make extremely small demands on the circuit
that they are sampling, say equivalent to a series
resistor of 100 megohm in front of the pin.

Digital I/O

Often it is useful to steer an input pin to a known state if
no input is present. This can be done by adding a pullup
resistor (to +5V), or a pulldown resistor (resistor to
ground) on the input, with 10K being a common value.
There are also convenient 20K pullup resistors built into
the Atmega chip that can be accessed from software.
These built-in pullup resistors are accessed in the
following manner.

pinMode(pin, INPUT); // set pin to input

digitalWrite(pin, HIGH); // turn on pullup resistors

Digital I/O

Pins configured as OUTPUT with pinMode are said to
be in a low-impedance state. This means that they can
provide a substantial amount of current to other circuits.
Atmega pins can source (provide positive current) or sink
(provide negative current) up to 40 mA (milliamps) of
current to other devices/circuits. This is enough current to
brightly light up a LED (don't forget the series resistor),
or run many sensors, for example, but not enough
current to run most relays, solenoids, or motors.

Digital I/O

Digital pins on Arduino have also specific functionalities:
¨  Pin 0 (RX) and 1 (TX) can be used to receive (RX)

and transmit (TX) TTL serial data. These pins are
connected to the corresponding pins of the
ATmega8U2 USB-to-TTL Serial chip.

¨  Pin 2 and 3 can be configured to trigger an interrupt
on a LOW value, a rising or falling edge, or a change
in value. See the attachInterrupt function for details.

Digital I/O

¨  Pin 3, 5, 6, 9, 10, and 11 can provide 8-bit PWM
output through analogWrite function. They are
marked in the board with the symbol ~ .

¨  Pin 10 (SS), 11 (MOSI), 12 (MISO) and 13 (SCK)
support SPI communication, which, although provided
by the underlying hardware, is not currently included
in the Arduino language.

¨  Pin 13 is connected to a built-in LED. When the pin
value is HIGH (/LOW), the LED is ON (/OFF).

Analog Input

The analog input pins support 10-bit analog-to-digital
conversion (ADC) using the analogRead function.
In this board the analog pins can also be used as digital
pins: analog input 0 as digital pin 14 , analog input 1
as digital pin 15, and so on through analog input 5 as
digital pin 19.

Analog pin 4 (SDA) and 5 (SCL) support I2C (TWI)
communication using the Wire library.

The board

Arduino UNO

Basic Reference

Source:

http://arduino.cc/

Program Structure

#include ...

// vars declaration

void setup() {  
 // initialization instructions

}

void loop() {

 // main program

}

I/O: pinMode

pinMode function, configures the specified pin to
behave either as an input or an output.

As of Arduino 1.0.1, it is possible to enable the internal
pullup resistors with the mode INPUT_PULLUP.
Additionally, the INPUT mode explicitly disables the
internal pullups.

I/O: pinMode

pinMode(pin, mode)

Params:
¤ pin: the number of the pin whose mode you wish to set.
¤ mode:

n  INPUT
n OUTPUT
n  INPUT_PULLUP

Returns: Nothing

I/O: digitalRead

Reads the value from a specified digital pin, either
HIGH or LOW.
Note that if the pin isn't connected to anything,
digitalRead can return either HIGH or LOW (and this
can change randomly).

I/O: digitalRead

digitalRead(pin)

Params:
¤ pin: the number of the pin whose value you wish to

read.

Returns:
¤ HIGH
¤ LOW

I/O: digitalWrite

Write a HIGH or a LOW value to a digital pin.

If the pin has been configured as an OUTPUT with
pinMode, its voltage will be set to the corresponding
value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V
(ground) for LOW.

If the pin is configured as an INPUT, writing a HIGH
value with digitalWrite will enable an internal 20K
pullup resistor. Writing LOW will disable the pullup.

I/O: digitalWrite

digitalWrite(pin, value)

Params:
¤ pin: the number of the pin whose value you wish to

write.
¤ value: the value to set HIGH or LOW.

Returns: Nothing

Example 1

// Sets pin 13 to the same value as pin 7,

// declared as an input.

int ledPin = 13; // LED connected to pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup()

{

 pinMode(ledPin, OUTPUT); // sets the pin 13 as output

 pinMode(inPin, INPUT); // sets the pin 7 as input

}

Example 1

void loop()

{

 val = digitalRead(inPin); // read the input pin

 digitalWrite(ledPin, val); // sets the LED to the

 // button's value

}

I/O: analogRead

Reads the value from the specified analog pin. The
Arduino board contains a 6 channel (8 channels on the
Mini and Nano, 16 on the Mega), 10-bit analog to
digital converter. This means that it will map input
voltages between 0 and 5 volts into integer values
between 0 and 1023. This yields a resolution between
readings of: 5 volts / 1024 units or, .0049 volts (4.9
mV) per unit.
It takes about 100 microseconds (0.0001 s) to read an
analog input, so the maximum reading rate is about
10,000 times a second.

I/O: analogRead

analogRead(pin)

Params:
¤ pin: the number of the analog input pin to read (from

0 to 5)

Returns:
¤  int (0 to 1023)

I/O: analogWrite

Writes an analog value (PWM wave) to a pin. Can be
used to light a LED at varying brightnesses or drive a
motor at various speeds. After a call to analogWrite,
the pin will generate a steady square wave of the
specified duty cycle until the next call to analogWrite
(or a call to digitalRead or digitalWrite on the same
pin).
The frequency of the PWM signal is approximately 490
Hz.
You do not need to call pinMode to set the pin as an
output before calling analogWrite.

I/O: analogWrite

analogWrite(pin, value)

Params:
¤ pin: the number of the pin whose value you wish to

write.
¤ value: the duty cycle which is between 0 (always off)

and 255 (always on).

Returns: Nothing

I/O: analogWrite - PWM

Pulse Width Modulation, or PWM, is a technique for
getting analog results with digital means. Digital control
is used to create a square wave, a signal switched
between on and off. This on-off pattern can simulate
voltages in between full on (5 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on
versus the time that the signal spends off. The duration
of "on time" is called the pulse width.

I/O: analogWrite - PWM

In this graphic, the green
lines represent a regular
time period. This duration
or period is the inverse of
the PWM frequency. In
other words, with Arduino's
PWM frequency at about
500Hz, the green lines
would measure 2
milliseconds each.

Example 2

// This example shows how to fade an LED using the

// analogWrite() function.

int ledPin = 9; // LED connected to digital pin 9

void setup() { } // nothing happens in setup

void loop() {

 // fade in from min to max in increments of 5 points:

 for(int fadeValue=0;fadeValue<=255;fadeValue+=5){

 // sets the value (range from 0 to 255):

 analogWrite(ledPin, fadeValue);

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

 }

Example 2

// fade out from max to min in increments of 5 points:

 for(int fadeValue=255;fadeValue>=0;fadeValue-=5){

 // sets the value (range from 0 to 255):

 analogWrite(ledPin, fadeValue);

 // wait for 30 milliseconds to see the dimming effect

 delay(30);

 }

}

Advanced I/O: tone

Generates a square wave of the specified frequency
(and 50% duty cycle) on a pin. A duration can be
specified, otherwise the wave continues until a call to
noTone. The pin can be connected to a piezo buzzer or
other speaker to play tones.

Only one tone can be generated at a time. If a tone is
already playing on a different pin, the call to tone() will
have no effect. If the tone is playing on the same pin,
the call will set its frequency.

Advanced I/O: tone

Use of the tone function will interfere with PWM output
on pins 3 and 11 (on boards other than the Mega).

Note that it is not possible to generate tones lower than
31Hz and if you want to play different pitches on
multiple pins, you need to call noTone on one pin
before calling tone on the next pin.

Advanced I/O: tone

tone(pin, frequency)

tone(pin, frequency, duration)

Params:
¤ pin: the pin on which to generate the tone.
¤  frequency: the frequency of the tone in hertz -

unsigned int.
¤ duration: (optional) the duration of the tone in

milliseconds - unsigned long

Returns: Nothing

Advanced I/O: noTone

Stops the generation of a square wave triggered by
tone. Has no effect if no tone is being generated.

Note that if you want to play different pitches on
multiple pins, you need to call noTone on one pin
before calling tone on the next pin.

Advanced I/O: noTone

noTone(pin)

Params:
¤ pin: the pin on which to stop generating the tone.

Returns: Nothing

Time: delay

Pauses the program for the amount of time (in
miliseconds) specified as parameter.

delay(ms)

Params:
¤ ms: the number of milliseconds to pause (unsigned long).

Returns: Nothing

Serial

Used for communication between the Arduino board
and a computer or other devices. All Arduino boards
have at least one serial port (also known as a UART or
USART): Serial. It communicates on digital pins 0 (RX)
and 1 (TX) as well as with the computer via USB. Thus, if
you use these functions, you cannot also use pins 0 and 1
for digital input or output.

Serial

You can use the Arduino environment's built-in serial
monitor to communicate with an Arduino board. Click the
serial monitor button in the toolbar and select the same
baud rate used in the call to begin.

Serial: Serial.begin

Sets the data rate in bits per second (baud) for serial
data transmission. For communicating with the computer,
use one of these rates: 300, 600, 1200, 2400, 4800,
9600, 14400, 19200, 28800, 38400, 57600, or
115200. You can, however, specify other rates - for
example, to communicate over pins 0 and 1 with a
component that requires a particular baud rate.

An optional second argument configures the data,
parity, and stop bits. The default is 8 data bits, no
parity, one stop bit.

Serial: Serial.begin

Serial.begin(speed)

Serial.begin(speed, config)

Params:
¤ speed: in bits per second (baud) - long
¤ config: (optional) sets data, parity, and stop bits. Valid

values are:
n SERIAL_5N1
n SERIAL_6N1
n SERIAL_7N1
n SERIAL_8N1 (the default)

Serial: Serial.begin

n SERIAL_5N2
n SERIAL_6N2
n SERIAL_7N2
n SERIAL_8N2
n SERIAL_5E1
n SERIAL_6E1
n SERIAL_7E1
n SERIAL_8E1
n SERIAL_5E2
n SERIAL_6E2
n SERIAL_7E2
n SERIAL_8E2

n SERIAL_5O1
n SERIAL_6O1
n SERIAL_7O1
n SERIAL_8O1
n SERIAL_5O2
n SERIAL_6O2
n SERIAL_7O2
n SERIAL_8O2

Returns: Nothing

Serial: Serial.available

Get the number of bytes (characters) available for
reading from the serial port. This is data that's already
arrived and stored in the serial receive buffer (which
holds 64 bytes).

Serial.available()

Params: None
Returns: The number of bytes available to read

Serial: Serial.read

Reads incoming serial data.

Serial.read()

Params: None
Returns: The first byte of incoming serial data available
(or -1 if no data is available) – int

Serial: Serial.write

Writes binary data to the serial port. This data is sent
as a byte or series of bytes. To send the characters
representing the digits of a number use the print
function instead.

Serial: Serial.write

Serial.write(val)

Serial.write(str)

Serial.write(buf, len)

Params:
¤ val: a value to send as a single byte
¤ str: a string to send as a series of bytes
¤ buf: an array to send as a series of bytes
¤  len: the length of the buffer

Returns: the number of bytes written

Serial: Serial.print

Prints data to the serial port as human-readable ASCII
text. This command can take many forms. Numbers are
printed using an ASCII character for each digit. Floats
are similarly printed as ASCII digits, defaulting to two
decimal places. Bytes are sent as a single character.
Characters and strings are sent as is. For example:

Serial.print(78); // gives "78"

Serial.print(1.23456); // gives "1.23"

Serial.print('N'); // gives "N"

Serial.print("Hello world."); // gives "Hello world."

Serial: Serial.print

An optional second parameter specifies the base
(format) to use; permitted values are BIN (binary, or
base 2), OCT (octal, or base 8), DEC (decimal, or base
10), HEX (hexadecimal, or base 16). For floating point
numbers, this parameter specifies the number of decimal
places to use. For example:
Serial.print(78, BIN); // gives "1001110"

Serial.print(78, OCT); // gives "116"

Serial.print(78, DEC); // gives "78"

Serial.print(78, HEX); // gives "4E"

Serial.print(1.23456, 0); // gives "1"

Serial.print(1.23456, 4); // gives "1.2346"

Serial: Serial.print

Serial.print(val)

Serial.print(val, format)

Params:
¤ val: the value to print - any data type.
¤  format: specifies the number base (for integral data

types) or number of decimal places (for floating point
types).

Returns:
¤  the number of bytes written - size_t (long).

Serial: Serial.println

Prints data to the serial port as human-readable ASCII
text followed by a carriage return character (ASCII 13,
or '\r') and a newline character (ASCII 10, or '\n'). This
command takes the same forms as Serial.print.

Serial: Serial.println

Serial.println(val)

Serial.println(val, format)

Params:
¤ val: the value to print - any data type.
¤  format: specifies the number base (for integral data

types) or number of decimal places (for floating point
types).

Returns:
¤  the number of bytes written - size_t (long).

SoftwareSerial

The Arduino hardware has built-in support for serial
communication on pins 0 and 1 (which also goes to the
computer via the USB connection). The native serial
support happens via a piece of hardware (built into the
chip) called a UART. This hardware allows the Atmega
chip to receive serial communication even while working
on other tasks, as long as there room in the 64 byte
serial buffer.

SoftwareSerial

The SoftwareSerial library has been developed to
allow serial communication on other digital pins of the
Arduino, using software to replicate the functionality
(hence the name "SoftwareSerial"). It is possible to have
multiple software serial ports with speeds up to 115200
bps. A parameter enables inverted signaling for devices
which require that protocol.

SoftwareSerial

The SoftwareSerial library has been developed to
allow serial communication on other digital pins of the
Arduino, using software to replicate the functionality
(hence the name "SoftwareSerial"). It is possible to have
multiple software serial ports with speeds up to 115200
bps. A parameter enables inverted signaling for devices
which require that protocol.
The library has some known limitations for example
when using multiple software serial ports, only one can
receive data at a time.

Example 4

#include<SoftwareSerial.h>

const int rx = 3;

const int tx = 2;

const int led = 13; // Built-in Led

SoftwareSerial bt(rx, tx);

void setup() {

 pinMode(led, OUTPUT);

 bt.begin(115200);

 Serial.begin(9600);

}

Example 4

void loop() {

 if (bt.available()) {

 char c = (char)bt.read();

 Serial.println(c);

 if (c=='1') {

 digitalWrite(led, HIGH);

 } else {

 digitalWrite(led, LOW);

 }

 }

}

Example 5

#include<SoftwareSerial.h>

const int rx = 3;

const int tx = 2;

const int led = 11; // Pin 11 supports PWM

SoftwareSerial bt(rx, tx);

void setup() {

 pinMode(led, OUTPUT);

 bt.begin(115200);

 Serial.begin(9600);

}

Example 5

void loop() {

 if (bt.available()) {

 int i = bt.read();

 Serial.println(i);

 analogWrite(led, (i - 48) * 10);

 }

}

Interrupts: attachInterrupt

Specifies a function to call when an external interrupt
occurs. Replaces any previous function that was attached
to the interrupt. Most Arduino boards (as Arduino UNO)
have two external interrupts: numbers 0 (on digital pin
2) and 1 (on digital pin 3).

Interrupts: attachInterrupt

attachInterrupt(interrupt, function, mode)

Params:
¤  interrupt can have values:

n 0 to consider interrupts on pin 2
n 1 to consider interrupts on pin 3.

¤  function: the function to call when an interrupt (0 or 1)
occurrs. This function must take no parameters and
return nothing.

Interrupts: attachInterrupt

¤ mode can have values:
n  LOW
n CHANGE
n RISING
n FALLING

Returns: Nothing

Interrupts: detachInterrupt

Turns off the given interrupt.

detachInterrupt(interrupt)

Params:
¤  Interrupt: the number of the interrupt to disable.

