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Basic Steps of Execution in DLXBasic Steps of Execution in DLX

 1. Instruction fetch step (IF)
 2. Instruction decode/register fetch step (ID)
 3. Execution/effective address step (EX)
 4. Memory access/branch completion step (MEM)
 5. Register write-back step (WB)



Maurizio Palesi 4

DLX DatapathDLX Datapath
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DLX Instruction FormatDLX Instruction Format
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Basic Steps of ExecutionBasic Steps of Execution
1. Instruction fetch (IF) IR ← Mem[PC], NPC ← PC + 4



Maurizio Palesi 7

Basic Steps of ExecutionBasic Steps of Execution
2. Instruction decode/register fetch (ID) A ← Regs[IR(6:10)], B ← Regs[IR(11:15)]

Imm ← (IR(16)16#IR(16:31))



Maurizio Palesi 8

Basic Steps of ExecutionBasic Steps of Execution
3. Execution/effective adddress (EX) ALU output ← A + Imm

ALU output ← A func B
ALU output ← A op Imm
ALU output ← NPC + Imm; Cond ← A op 0
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Basic Steps of ExecutionBasic Steps of Execution
4. Memory access/Branch completion (MEM)

- PC ← NPC, LMD ← Mem[ALU output] or Mem[ALU output] ← B
- if (cond) PC ← ALU ouput
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Basic Steps of ExecutionBasic Steps of Execution
5. Register write-back (WB) Regs[IR(16:20)] ← ALU output

Regs[IR(11:15)] ← ALU output
Regs[IR(11:15)] ← LMD
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DiscussionDiscussion
 Branch & Store instructions: 4 cycles
 All other instructions: 5 cycles
 Example

Branch 12%, Store 5%
CPI = (12% + 5%)*4 + 83%*5 = 4.83

 Improvement
Complete ALU instruction during MEM
Ex., 47% ALU instructions

CPI = (12% + 5% + 47%)*4 + 36%*5  = 4.36
Speedup = 4.83/4.36 = 1.1

 Any other attempts to decrease CPI may increase 
the clock cycle time
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Multicycle ImplementationMulticycle Implementation
 A simple FSM could be used to implement the control logic

 Microcode control could be used for a much more complex machine

 Hardware redoundancies
 Two ALU

 Separate instruction and data memories
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Pipelining: Its Natural!Pipelining: Its Natural!
Laundry Example
Ann, Brian, Cathy, Dave 

each have one load of 
clothes to wash, dry, and 
fold

Washer takes 30 minutes
Dryer takes 40 minutes
“Folder” takes 20 minutes

A B C D
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Sequential LaundrySequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take? 
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Pipelined Laundry Start work ASAPPipelined Laundry Start work ASAP

 Pipelined laundry takes 3.5 hours for 4 loads 
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Pipelining LessonsPipelining Lessons
 Pipelining doesn’t help 

latency of single task, it 
helps throughput of entire 
workload

 Pipeline rate limited by 
slowest pipeline stage

 Multiple tasks operating 
simultaneously

 Potential speedup = 
Number pipe stages

 Unbalanced lengths of pipe 
stages reduces speedup

 Time to “fill” pipeline and 
time to “drain” it reduces 
speedup
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PipeliningPipelining
 Technique for having multiple instructions execute 

in an overlapped manner
 Assembly Line
 Throughput

Determined by how often an instruction exits the 
pipeline

 Time to move one step is machine cycle time
Determined by the slowest step in the pipeline
Often it is clock cycle though clocks may have multiple 

phases
 Length of Pipe - No of stages

Determine latency
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Pipeline PerformancePipeline Performance
Under ideal conditions

Time per instruction = Time per instruction on 
non-pipelined machine/Number of pipe stages

Speedup = Number of stages

But…
Stages are not balanced
Overhead (10%)



Maurizio Palesi 19

Basic Performance IssuesBasic Performance Issues
Pipeline increases instruction throughput

It does not decrease the time of execution of 
any single instruction
It may increase it!

Stage imbalance may yield further 
inefficiencies

Overheads due to
Register and latches adding to delays and 

clock skew
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Pipeline Example: 3 stagesPipeline Example: 3 stages

10 16 14 2 10 16 14 2

16 210 2 14 2

16 210 2 14 2

18 ns 18 ns 18 ns 18 ns

Assume 2 nsec latch delay

Unpipelined (mono cycle)

Pipelined

Latency = 42 nsec, Throughput = 1/42

Latency = (3 x 18) = 54 nsec, Throughput = 1/18 (2.3x, not 3x)
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CPU TimeCPU Time
CPU Time = # Instructions ×  CPI ×  TCK

Strategy # instructions CPI Tck

Single long clock cycle = 1 big

Multiple cycles = many small

Pipelining = 1 (ideal) small
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Basic Pipeline DLXBasic Pipeline DLX
Clock cycle

Instruction number 1 2 3 4 5 6 7 8

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM
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Making Pipeline WorkMaking Pipeline Work
Determine what happens at each clock tick
Assure no resource conflicts

Can not use one ALU for address calculation 
and ALU functions

All operations in a pipe stage must complete 
in one clock cycle
May have to elongate the clock cycle to 

accommodate this
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DLX Pipeline: DatapathDLX Pipeline: Datapath



Maurizio Palesi 25

Pipeline StructurePipeline Structure
 Major functional units are used in different cycles
 Three observations

Basic datapath uses separate instruction and data 
memory
Have separate instruction and data caches
Memory bandwidth increases in a pipelined system

Register file is used in two stages - ID and WB
To start a new instruction every clock we must 

increment and store the PC every clock cycle during IF 
stage
What happens when branches occur
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Pipeline StructurePipeline Structure
 Every pipe stage is active in every cycle

Values passed from one stage to next must be placed in registers
Use pipeline registers or pipeline latches between stages

 Registers used to transfer information from one stage to 
the next

 Pipeline registers carry both control and data from stage to 
stage

 Values may have to be copied from one to the next stage if 
it is needed at a later stage

 An instruction is active in exactly one stage of the pipe at 
any moment
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DLX Datapath w/o PipeliningDLX Datapath w/o Pipelining
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DLX Pipeline StagesDLX Pipeline Stages



Maurizio Palesi 29

Events in DLX PipeEvents in DLX Pipe
 IF Stage

 IF/ID.IR ← Mem[PC]
 IF/ID.NPC, PC ← if (EX/MEM.Opcode == Branch && EX/MEM.cond) ← EX/MEM.ALU output 

else ← PC+4 

 ID Stage
 ID/EX.A ← Regs[IF/ID.IR(6:10)]; ID/EX.B ← Regs[IF/ID.IR(11:15)]; ID/EX.NPC ← IF/ID.NPC;
 ID/EX.IR ← IF/ID.IR; ID/EX.Imm ← (IF/ID.IR(16))16#IF/ID.IR(16:31)
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Events in DLX PipeEvents in DLX Pipe
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Events in DLX PipeEvents in DLX Pipe
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Events in DLX PipeEvents in DLX Pipe
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Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC
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Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC
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Structural HazardStructural Hazard
Some combination of instructions result in 

resource conflicts
Some functional units are not fully pipelined
Some resource is not duplicated enough

Register file write port
Single memory pipeline for instruction and data

Stall pipeline for one cycle
Also called a Bubble
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Structural HazardStructural Hazard
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Pipeline StallPipeline Stall

Clock cycle
Instruction number 1 2 3 4 5 6 7 8 9

Load instruction IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 Stall IF ID EX MEM WB

Instruction i+4 IF ID EX MEM

Single memory for data and instructions
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Structural Hazard and BubblesStructural Hazard and Bubbles
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Solutions to Structural HazardSolutions to Structural Hazard

Resource Duplication
Example

Separate I and D caches for memory access conflict
Time-multiplexed or multiport register file for register 

file access conflict
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Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC
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Data HazardsData Hazards
Order of access to operands is changed by 

the pipeline vs the normal order
ADD R1, R2, R3
SUB R4, R1, R5

Clock cycle
Instruction number 1 2 3 4 5 6

ADD  R1, R2, R3 IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB
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Types of Data HazardTypes of Data Hazard
 RAW (read after write)

j tries to read a source before i writes it, so j may get 
wrong value

 WAR (write after read)
j tries to write a destination before it is read by i
As reads are early this can not happen in our examples
Autoincrement addressing can create it

 WAW (write after write)
j tries to write an operand before it is written by i. Wrong 

value may remain in the register
Occurs in pipes which write in more than one stage
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Data HazardData Hazard
 WAR

SW   0(R1),R2 IF ID EX MEM1 MEM2 WB
ADD R2,R3,R4 IF ID EX WB

 WAW
LW   R1,0(R2) IF ID EX MEM1 MEM2 WB
ADD R1,R2,R3 IF ID EX WB
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Solutions to Data HazardSolutions to Data Hazard
(Internal) Forwarding

Extra hardware

Freezing the pipeline
Stalls/bubbles; pipeline interlock

Compiler (instruction) scheduling
Delay slot
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Data HazardData Hazard

ADD R1, R2, R3

SUB R4, R5, R1

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11
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Data HazardData Hazard
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Forwarding PathsForwarding Paths
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Another ExampleAnother Example ADD R1, R2, R3
LW R4, 0(R1)
SW 12(R1), R4
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ForwardingForwarding
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Data Hazards Requiring StallsData Hazards Requiring Stalls

Situations were forwarding is not possible
Load interlock

LW R1, 0(R2)
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

Pipeline interlock hardware
Detects Hazard
Stalls the pipe until hazard is cleared
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Load cannot Bypass Results to SUBLoad cannot Bypass Results to SUB
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Pipeline Interlock SolutionPipeline Interlock Solution
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Load InterlocksLoad Interlocks

Matching operand fields
ID/EX.IR(0:5) IF/ID.IR(0:5)

Load Reg-reg ALU ID/EX.IR(11:15)==IF/ID.IR(6:10)
Load Reg-reg ALU ID/EX.IR(11:15)==IF/ID.IR(11:15)

Load ID/EX.IR(11:15)==IF/ID.IR(6:10)

Opcode field of 
ID/EX

Opcode field of 
IF/ID

Load, Store, ALU 
imm, Branch
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Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC
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Control HazardsControl Hazards
 Can cause a greater performance loss than do data hazards

 Recall that if instruction i is a taken branch
PC is not changed until the end of MEM
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Stalling the PipelineStalling the Pipeline
 The simplest method to deal with branches is stall the 

pipeline

 We do not want to stall the pipeline until we know that the 
instruction is a branch
The stall does not occur until after the ID stage

3 cycles penalty
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Reducing the Branch PenaltyReducing the Branch Penalty
The number of clock cycles in a branch stall 

can be reduced in two steps
Find out whether the branch is taken or not 

taken earlier in the pipeline
Compute the taken PC (i.e., the address of the 

branch target) earlier
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Reducing the Branch PenaltyReducing the Branch Penalty
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Reducing the Branch PenaltyReducing the Branch Penalty
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Reducing the Branch PenaltyReducing the Branch Penalty
With a separate adder and a branch decision 

made during ID, there is only 1 clock cycle 
stall on branches

1 cycle penalty
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Reducing the Branch PenaltyReducing the Branch Penalty
 Predict-not-taken scheme
 Treat every branch as not taken

Allowing the hw to continue as if the branch were not executed
 If the branch is taken, it needs to turn the fetched instruction into a nop

Branch taken

Branch not taken
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