
Maurizio Palesi 1

PipeliningPipelining**

Maurizio Palesi

* Adapted from David A. Patterson’s CS252 lecture slides,

http://www.cs.berkeley/~pattrsn/252S98/index.html

Copyright 1998 UCB



Maurizio Palesi 2

ReferencesReferences
John L. Hennessy and David A. Patterson, 

Computer Architecture a Quantitative 
Approach, second edition, Morgan 
Kaufmann
Chapter 3



Maurizio Palesi 3

Basic Steps of Execution in DLXBasic Steps of Execution in DLX

 1. Instruction fetch step (IF)
 2. Instruction decode/register fetch step (ID)
 3. Execution/effective address step (EX)
 4. Memory access/branch completion step (MEM)
 5. Register write-back step (WB)



Maurizio Palesi 4

DLX DatapathDLX Datapath



Maurizio Palesi 5

DLX Instruction FormatDLX Instruction Format

Op

0 5

Rs1 Rd Immediate

31161511106

Op

0 5

Target

316

Op

0 5

Rs1 Rs2                           Opx

31161511106

Rd

Register-Register – Register ALU operations

26272120

Register-Immediate – Load/Store, ALU immed, Jump

Op

0 5

Rs1 Rs2 Immediate

31161511106

Branch

Jump / Call

R-Type

I-Type

J-Type



Maurizio Palesi 6

Basic Steps of ExecutionBasic Steps of Execution
1. Instruction fetch (IF) IR ← Mem[PC], NPC ← PC + 4



Maurizio Palesi 7

Basic Steps of ExecutionBasic Steps of Execution
2. Instruction decode/register fetch (ID) A ← Regs[IR(6:10)], B ← Regs[IR(11:15)]

Imm ← (IR(16)16#IR(16:31))



Maurizio Palesi 8

Basic Steps of ExecutionBasic Steps of Execution
3. Execution/effective adddress (EX) ALU output ← A + Imm

ALU output ← A func B
ALU output ← A op Imm
ALU output ← NPC + Imm; Cond ← A op 0



Maurizio Palesi 9

Basic Steps of ExecutionBasic Steps of Execution
4. Memory access/Branch completion (MEM)

- PC ← NPC, LMD ← Mem[ALU output] or Mem[ALU output] ← B
- if (cond) PC ← ALU ouput



Maurizio Palesi 10

Basic Steps of ExecutionBasic Steps of Execution
5. Register write-back (WB) Regs[IR(16:20)] ← ALU output

Regs[IR(11:15)] ← ALU output
Regs[IR(11:15)] ← LMD



Maurizio Palesi 11

DiscussionDiscussion
 Branch & Store instructions: 4 cycles
 All other instructions: 5 cycles
 Example

Branch 12%, Store 5%
CPI = (12% + 5%)*4 + 83%*5 = 4.83

 Improvement
Complete ALU instruction during MEM
Ex., 47% ALU instructions

CPI = (12% + 5% + 47%)*4 + 36%*5  = 4.36
Speedup = 4.83/4.36 = 1.1

 Any other attempts to decrease CPI may increase 
the clock cycle time



Maurizio Palesi 12

Multicycle ImplementationMulticycle Implementation
 A simple FSM could be used to implement the control logic

 Microcode control could be used for a much more complex machine

 Hardware redoundancies
 Two ALU

 Separate instruction and data memories



Maurizio Palesi 13

Pipelining: Its Natural!Pipelining: Its Natural!
Laundry Example
Ann, Brian, Cathy, Dave 

each have one load of 
clothes to wash, dry, and 
fold

Washer takes 30 minutes
Dryer takes 40 minutes
“Folder” takes 20 minutes

A B C D



Maurizio Palesi 14

Sequential LaundrySequential Laundry

 Sequential laundry takes 6 hours for 4 loads
 If they learned pipelining, how long would laundry take? 

A

B

C

D

30 40 2030 40 2030 40 2030 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time



Maurizio Palesi 15

Pipelined Laundry Start work ASAPPipelined Laundry Start work ASAP

 Pipelined laundry takes 3.5 hours for 4 loads 

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20



Maurizio Palesi 16

Pipelining LessonsPipelining Lessons
 Pipelining doesn’t help 

latency of single task, it 
helps throughput of entire 
workload

 Pipeline rate limited by 
slowest pipeline stage

 Multiple tasks operating 
simultaneously

 Potential speedup = 
Number pipe stages

 Unbalanced lengths of pipe 
stages reduces speedup

 Time to “fill” pipeline and 
time to “drain” it reduces 
speedup

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20



Maurizio Palesi 17

PipeliningPipelining
 Technique for having multiple instructions execute 

in an overlapped manner
 Assembly Line
 Throughput

Determined by how often an instruction exits the 
pipeline

 Time to move one step is machine cycle time
Determined by the slowest step in the pipeline
Often it is clock cycle though clocks may have multiple 

phases
 Length of Pipe - No of stages

Determine latency



Maurizio Palesi 18

Pipeline PerformancePipeline Performance
Under ideal conditions

Time per instruction = Time per instruction on 
non-pipelined machine/Number of pipe stages

Speedup = Number of stages

But…
Stages are not balanced
Overhead (10%)



Maurizio Palesi 19

Basic Performance IssuesBasic Performance Issues
Pipeline increases instruction throughput

It does not decrease the time of execution of 
any single instruction
It may increase it!

Stage imbalance may yield further 
inefficiencies

Overheads due to
Register and latches adding to delays and 

clock skew



Maurizio Palesi 20

Pipeline Example: 3 stagesPipeline Example: 3 stages

10 16 14 2 10 16 14 2

16 210 2 14 2

16 210 2 14 2

18 ns 18 ns 18 ns 18 ns

Assume 2 nsec latch delay

Unpipelined (mono cycle)

Pipelined

Latency = 42 nsec, Throughput = 1/42

Latency = (3 x 18) = 54 nsec, Throughput = 1/18 (2.3x, not 3x)



Maurizio Palesi 21

CPU TimeCPU Time
CPU Time = # Instructions ×  CPI ×  TCK

Strategy # instructions CPI Tck

Single long clock cycle = 1 big

Multiple cycles = many small

Pipelining = 1 (ideal) small



Maurizio Palesi 22

Basic Pipeline DLXBasic Pipeline DLX
Clock cycle

Instruction number 1 2 3 4 5 6 7 8

Instruction i IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 IF ID EX MEM WB

Instruction i+4 IF ID EX MEM



Maurizio Palesi 23

Making Pipeline WorkMaking Pipeline Work
Determine what happens at each clock tick
Assure no resource conflicts

Can not use one ALU for address calculation 
and ALU functions

All operations in a pipe stage must complete 
in one clock cycle
May have to elongate the clock cycle to 

accommodate this



Maurizio Palesi 24

DLX Pipeline: DatapathDLX Pipeline: Datapath



Maurizio Palesi 25

Pipeline StructurePipeline Structure
 Major functional units are used in different cycles
 Three observations

Basic datapath uses separate instruction and data 
memory
Have separate instruction and data caches
Memory bandwidth increases in a pipelined system

Register file is used in two stages - ID and WB
To start a new instruction every clock we must 

increment and store the PC every clock cycle during IF 
stage
What happens when branches occur



Maurizio Palesi 26

Pipeline StructurePipeline Structure
 Every pipe stage is active in every cycle

Values passed from one stage to next must be placed in registers
Use pipeline registers or pipeline latches between stages

 Registers used to transfer information from one stage to 
the next

 Pipeline registers carry both control and data from stage to 
stage

 Values may have to be copied from one to the next stage if 
it is needed at a later stage

 An instruction is active in exactly one stage of the pipe at 
any moment



Maurizio Palesi 27

DLX Datapath w/o PipeliningDLX Datapath w/o Pipelining



Maurizio Palesi 28

DLX Pipeline StagesDLX Pipeline Stages



Maurizio Palesi 29

Events in DLX PipeEvents in DLX Pipe
 IF Stage

 IF/ID.IR ← Mem[PC]
 IF/ID.NPC, PC ← if (EX/MEM.Opcode == Branch && EX/MEM.cond) ← EX/MEM.ALU output 

else ← PC+4 

 ID Stage
 ID/EX.A ← Regs[IF/ID.IR(6:10)]; ID/EX.B ← Regs[IF/ID.IR(11:15)]; ID/EX.NPC ← IF/ID.NPC;
 ID/EX.IR ← IF/ID.IR; ID/EX.Imm ← (IF/ID.IR(16))16#IF/ID.IR(16:31)



Maurizio Palesi 30

Events in DLX PipeEvents in DLX Pipe



Maurizio Palesi 31

Events in DLX PipeEvents in DLX Pipe



Maurizio Palesi 32

Events in DLX PipeEvents in DLX Pipe



Maurizio Palesi 33

Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC



Maurizio Palesi 34

Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC



Maurizio Palesi 35

Structural HazardStructural Hazard
Some combination of instructions result in 

resource conflicts
Some functional units are not fully pipelined
Some resource is not duplicated enough

Register file write port
Single memory pipeline for instruction and data

Stall pipeline for one cycle
Also called a Bubble



Maurizio Palesi 36

Structural HazardStructural Hazard



Maurizio Palesi 37

Pipeline StallPipeline Stall

Clock cycle
Instruction number 1 2 3 4 5 6 7 8 9

Load instruction IF ID EX MEM WB

Instruction i+1 IF ID EX MEM WB

Instruction i+2 IF ID EX MEM WB

Instruction i+3 Stall IF ID EX MEM WB

Instruction i+4 IF ID EX MEM

Single memory for data and instructions



Maurizio Palesi 38

Structural Hazard and BubblesStructural Hazard and Bubbles



Maurizio Palesi 39

Solutions to Structural HazardSolutions to Structural Hazard

Resource Duplication
Example

Separate I and D caches for memory access conflict
Time-multiplexed or multiport register file for register 

file access conflict



Maurizio Palesi 40

Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC



Maurizio Palesi 41

Data HazardsData Hazards
Order of access to operands is changed by 

the pipeline vs the normal order
ADD R1, R2, R3
SUB R4, R1, R5

Clock cycle
Instruction number 1 2 3 4 5 6

ADD  R1, R2, R3 IF ID EX MEM WB

SUB R4, R1, R5 IF ID EX MEM WB



Maurizio Palesi 42

Types of Data HazardTypes of Data Hazard
 RAW (read after write)

j tries to read a source before i writes it, so j may get 
wrong value

 WAR (write after read)
j tries to write a destination before it is read by i
As reads are early this can not happen in our examples
Autoincrement addressing can create it

 WAW (write after write)
j tries to write an operand before it is written by i. Wrong 

value may remain in the register
Occurs in pipes which write in more than one stage



Maurizio Palesi 43

Data HazardData Hazard
 WAR

SW   0(R1),R2 IF ID EX MEM1 MEM2 WB
ADD R2,R3,R4 IF ID EX WB

 WAW
LW   R1,0(R2) IF ID EX MEM1 MEM2 WB
ADD R1,R2,R3 IF ID EX WB



Maurizio Palesi 44

Solutions to Data HazardSolutions to Data Hazard
(Internal) Forwarding

Extra hardware

Freezing the pipeline
Stalls/bubbles; pipeline interlock

Compiler (instruction) scheduling
Delay slot



Maurizio Palesi 45

Data HazardData Hazard

ADD R1, R2, R3

SUB R4, R5, R1

AND R6, R1, R7

OR R8, R1, R9

XOR R10, R1, R11



Maurizio Palesi 46

Data HazardData Hazard



Maurizio Palesi 47

Forwarding PathsForwarding Paths



Maurizio Palesi 48

Another ExampleAnother Example ADD R1, R2, R3
LW R4, 0(R1)
SW 12(R1), R4



Maurizio Palesi 49

ForwardingForwarding



Maurizio Palesi 50

Data Hazards Requiring StallsData Hazards Requiring Stalls

Situations were forwarding is not possible
Load interlock

LW R1, 0(R2)
SUB R4, R1, R5
AND R6, R1, R7
OR R8, R1, R9

Pipeline interlock hardware
Detects Hazard
Stalls the pipe until hazard is cleared



Maurizio Palesi 51

Load cannot Bypass Results to SUBLoad cannot Bypass Results to SUB



Maurizio Palesi 52

Pipeline Interlock SolutionPipeline Interlock Solution



Maurizio Palesi 53

Load InterlocksLoad Interlocks

Matching operand fields
ID/EX.IR(0:5) IF/ID.IR(0:5)

Load Reg-reg ALU ID/EX.IR(11:15)==IF/ID.IR(6:10)
Load Reg-reg ALU ID/EX.IR(11:15)==IF/ID.IR(11:15)

Load ID/EX.IR(11:15)==IF/ID.IR(6:10)

Opcode field of 
ID/EX

Opcode field of 
IF/ID

Load, Store, ALU 
imm, Branch



Maurizio Palesi 54

Pipeline Hazards: Major HurdlesPipeline Hazards: Major Hurdles

Structural Hazards
Resource conflicts

Data Hazards
Data dependencies

Control Hazards
Branches and other instructions that change PC



Maurizio Palesi 55

Control HazardsControl Hazards
 Can cause a greater performance loss than do data hazards

 Recall that if instruction i is a taken branch
PC is not changed until the end of MEM



Maurizio Palesi 56

Stalling the PipelineStalling the Pipeline
 The simplest method to deal with branches is stall the 

pipeline

 We do not want to stall the pipeline until we know that the 
instruction is a branch
The stall does not occur until after the ID stage

3 cycles penalty



Maurizio Palesi 57

Reducing the Branch PenaltyReducing the Branch Penalty
The number of clock cycles in a branch stall 

can be reduced in two steps
Find out whether the branch is taken or not 

taken earlier in the pipeline
Compute the taken PC (i.e., the address of the 

branch target) earlier



Maurizio Palesi 58

Reducing the Branch PenaltyReducing the Branch Penalty



Maurizio Palesi 59

Reducing the Branch PenaltyReducing the Branch Penalty



Maurizio Palesi 60

Reducing the Branch PenaltyReducing the Branch Penalty
With a separate adder and a branch decision 

made during ID, there is only 1 clock cycle 
stall on branches

1 cycle penalty



Maurizio Palesi 61

Reducing the Branch PenaltyReducing the Branch Penalty
 Predict-not-taken scheme
 Treat every branch as not taken

Allowing the hw to continue as if the branch were not executed
 If the branch is taken, it needs to turn the fetched instruction into a nop

Branch taken

Branch not taken


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

