Maurizio Palesi

Obiettivi

- Trovare una espressione in forma SP o PS minima rispetto a certi criteri di costo
- Nella ottimizzazione delle espressioni SP (PS)a due livelli l'obiettivo è
 - Ridurre il numero di mintermini (maxtermini)
 - Ridurre il numero di letterali
 - → f(a,b,c)=abc+abc+abc equivale a f(a,b,c)=ab+ac
- Metodologie di minimizzazione
 - → Karnaugh
 - Quine-Mc Cluskey

Generalità

- Si propone di identificare forme minime a due livelli applicando
 - → Per SP la riduzione aZ+aZ=(a+a)Z=Z con Z termine prodotto (implicante) di n-1 variabili
 - → Per PS la riduzione (a+Z)(a+Z)=Z con Z termine somma (implicato) di n-1 variabili
 - \rightarrow Esempio: abc + abc = ab

Esempio di Riduzione

La riduzione può essere applicata iterativamente

```
ab\underline{cd} + ab\underline{cd} + abc\underline{d} + abcd =
= ab\underline{c}(\underline{d}+d) + abc(\underline{d}+d) =
= ab\underline{c} + abc = ab(\underline{c}+c) = ab
```

- La formula di riduzione potrebbe essere facilmente applicata direttamente alle espressioni Booleane
- Il problema consiste nell'identificare
 - → Sia tutti i termini su cui applicare la riduzione
 - Sia i tutti termini che partecipano a più riduzioni contemporaneamente e replicarli

Problemi

- ■f(a,b)=<u>a</u>b+ab+a<u>b</u>
 - \rightarrow (a+a)b + ab = b + ab
 - $\rightarrow \underline{a}b + a(b+\underline{b}) = \underline{a}b + a$

Nessuna delle due espressioni è minima!

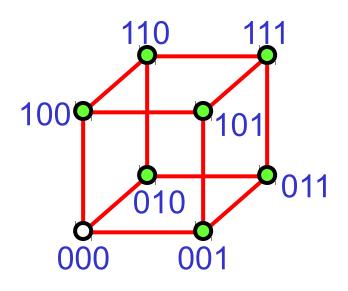
- L'espressione minima è a+b ottenuta come ab + ab + ab =
 - = ab + ab + ab + ab =
 - = (a+<u>a</u>)b + a(b+<u>b</u>) = b+a

- Il metodo delle mappe di Karnaugh consente di risolvere direttamente i problemi identificati
 - Sia dovuti alla replicazione dei termini
 - Sia legati alla identificazione dei termini da raggruppare
- Il metodo delle mappe di Karnaugh è grafico
- La sua applicazione è semplice per un numero di variabili fino a 4
 - → Risulta complesso per un numero di variabili da 5 a 6
 - →É praticamente inattuabile per un numero di variabili superiori a 6

- Vogliamo trovare una copertura minima della funzione OR(a,b,c)
- Occorre
 - Identificare tutti gli implicanti primi essenziali
 - Un insieme minimo di implicanti che coprano i mintermini non coperti dagli implicanti primi essenziali

Rappresentazione nD

OR(a,b,c)								
а	b	С	0					
0	0	0	0					
0	0	1	1					
0	1	0	1					
0	1	1	1					
1	0	0	1					
1	0	1	1					
1	1	0	1					
1	1	1	1					



- Si vede subito che gli implicanti primi essenziali sono a, b e c che coprono interamente la funzione
- Ma questa rappresentazione è scomoda al crescere del numero di variabili!

Rappresentazione 2D

Rappresentiamo lo spazio Booleano n-dimensionale sullo spazio a due dimensioni

		а							
	_	0 1							
h	0	00	10						
b	1	01	11						

0 1 00 10 01 11 0 000 010 110 100 0 001 011 111 101

2 variabili

- → Gli indici delle colonne e delle righe in posizione adiacente differiscono solo di un bit
- → La prima e l'ultima colonna (riga) devono essere considerate adiacenti
- → Per le forme *SP* ogni casella in cui è presente un 1 corrisponde ad un mintermine

3 variabili

ab

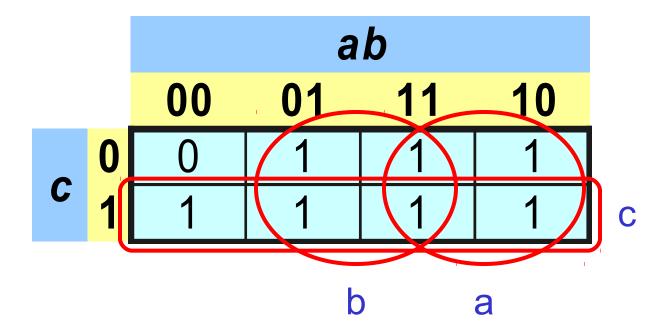
		4 variabili,						
			а					
		00	01	01 11				
	00	0000	0100	1100	1000			
مما	01	0001	0101	1101	1001			
cd	11	0011	0111	1111	1011			
	10	0010	0110	1110	1010			

- Ogni casela della mappa corrisponde ad un punto dello spazio Booleano
- In ogni casella può essere messo il valore della funzione in quel punto

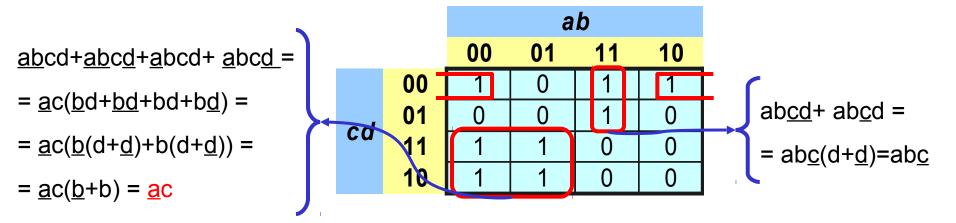
		ab									
	_	00	01	11	10						
	0	0	1	1	1						
C	1	1	1	1	1						

Mappa di Karnaugh della funzione OR(a,b,c)

Su questa mappa si possono identificare facilmente i sottocubi di dimensione massima (implicanti primi)



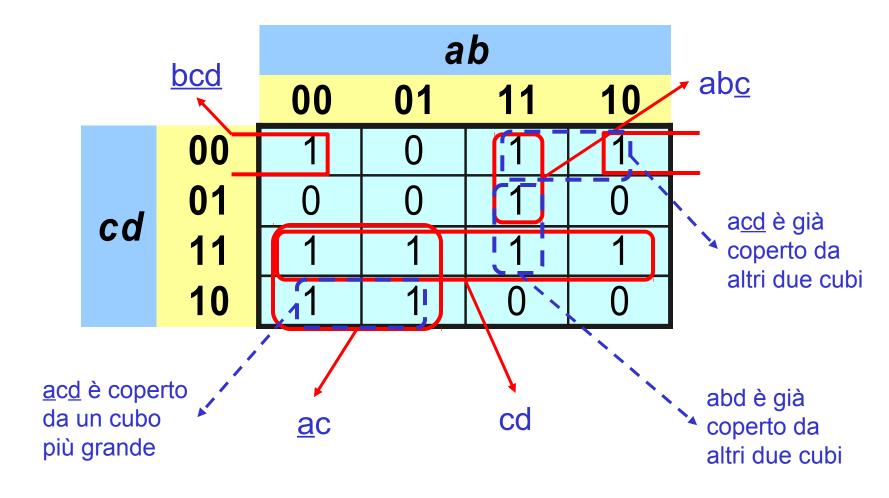
$$OR(a,b,c) = a + b + c$$

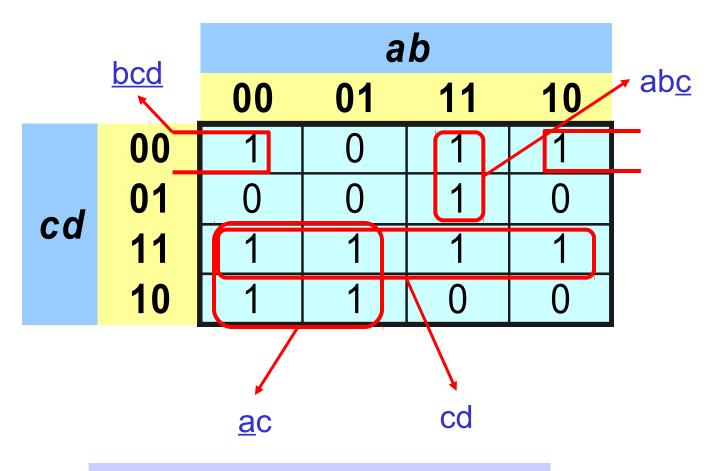


- In una mappa a *n* variabili ad un cubo di 2^m caselle adiacenti corrisponde un termine prodotto di *n-m* variabili
- Le n-m variabili che restano sono quelle che nel cubo hanno lo stesso valore in tutte le caselle
- Una funzione f può essere rappresentata da una espressione SP nella quale i prodotti corrispondono ai cubi necessari per coprire tutte le caselle in cui è presente il valore 1

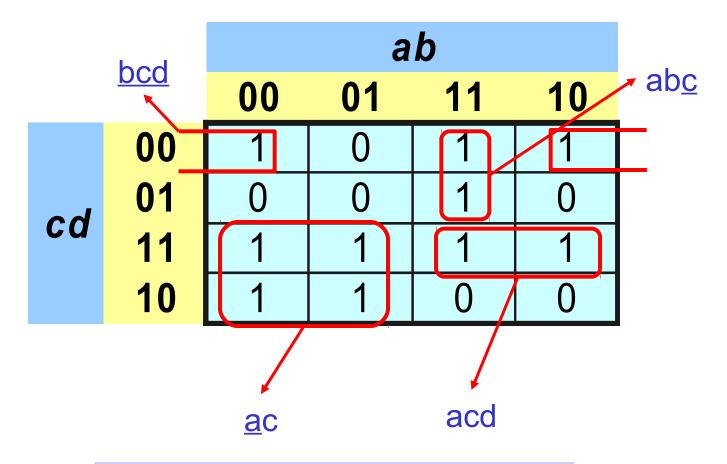
Regole

- La minimizzazione è ottenuta individuando il minimo numero di cubi e, a parità di numero, quelli col la massima dimensione garantendo la copertura di tutti gli 1
- Per ottenere un'espressione minima
 - Non si deve scegliere un cubo le cui caselle sono coperte da un cubo di dimensione maggiore
 - Se esistono più modi di coprire gli 1, bisogna scegliere la copertura con i cubi di massima dimensione
 - → Non si devono scegliere cubi che coprono solo 1 di fgià coperti da un insieme di altri cubi già scelti

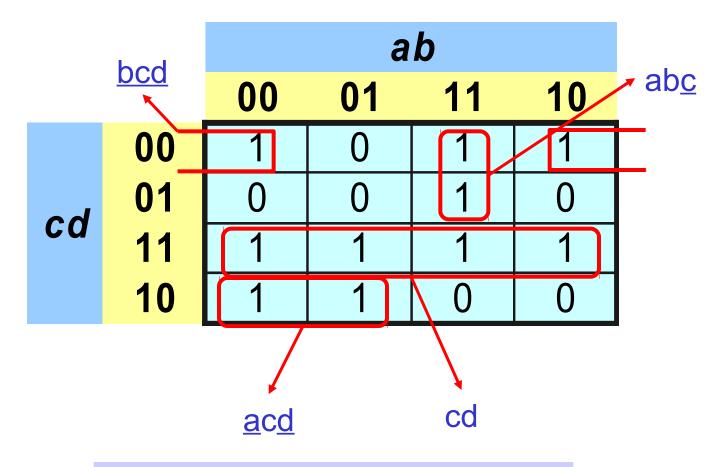




f(a,b,c,d) = abc + bcd + ac + cd



f(a,b,c,d) = abc + bcd + ac + acd



f(a,b,c,d) = abc + bcd + acd + cd

- Le tre funzioni precedenti
 - $\rightarrow f(a,b,c,d) = abc + bcd + ac + cd$
 - $\rightarrow f(a,b,c,d) = abc + bcd + ac + acd$
 - $\rightarrow f(a,b,c,d) = abc + bcd + acd + cd$

Sono equivalenti da un punto di vista funzionale ma la prima è quella minima

Funzioni non Completamente Specificate

Le condizioni di indifferenza possono essere sfruttate per incrementare la dimensione di cubi

			а	b						a	b	
		00	01	11	10				00	01	11	10
	00	1	0	1	0	Impopondo 0	00	00	1	0	1	0
	01	-	0	1	0	Imponendo 0		01	0	0	1	0
cd	11	1	1	-	-		cu ,	11	1	1	0	0
	10	1	0	0	0		10	10	1	0	0	0
									1 1			

$$f(a,b,c,d) = \underline{abd} + \underline{abc} + \underline{a}cd$$

Funzioni non Completamente Specificate

Le condizioni di indifferenza possono essere sfruttate per incrementare la dimensione di cubi

			а	b						a	b	
		00	01	11	10				00	01	11	10
	00	1	0	1	0	Imponendo 1		00 01	1	0	1	0
	01	-	0	1	0		cd		1	0	1	0
cd	11	1	1	-			Cu	11	1	1	1	1
	10	1	0	0	0			10	1	0	0	0

$$f(a,b,c,d) = \underline{ab} + ab\underline{c} + cd$$