Individuiamo gli implicanti primi

00000	0	$\sqrt{}$
00010	2	$\sqrt{}$
00100	4	$\sqrt{}$
10000	16	$\sqrt{}$
00110	6	$\sqrt{}$
01100	12	$\sqrt{}$
10010	18	$\sqrt{}$
11000	24	$\sqrt{}$
01110	14	
11010	26	$\sqrt{}$
11100	28	$\sqrt{}$
11110	30	

000-0	0,2 √
00-00	0,4 √
	-, -
-0000	0,16 √
00-10	2,6 √
-0010	2,18 √
001-0	4,6 √
0-100	4,12 √
100-0	16,18 √
1-000	16,24 √
0-110	6,14 √
011-0	12,14 √
-1100	12,28 √
1-010	18,26 √
110-0	24,26 √
11-00	24,28 √
-1110	14,30 √
11-10	26,30 √
111-0	28,30 √

Gli implicanti primi sono i seguenti:

$$P0(0,2,4,6) = \underline{abe}$$

 $P1(0,2,16,18) = \underline{bce}$
 $P2(4,6,12,14) = \underline{ace}$
 $P3(16,18,24,26) = \underline{ace}$
 $P4(12,14,28,30) = \underline{bce}$
 $P5(24,26,28,30) = \underline{abe}$

Costruiamo la tabella degli implicanti

	0	2	4	6	12	14	16	18	24	26	28	30
P0(0,2,4,6)	X	X	X	Χ								
P1(0,2,16,18)	X	X					Χ	Χ				
P2(4,6,12,14)			Χ	Χ	Χ	Χ						
P3(16,18,24,26)							Χ	Χ	Χ	Χ		
P4(12,14,28,30)					Χ	Χ					Χ	X
P5(24,26,28,30)									Χ	Χ	Χ	Х

Non possiamo applicare il criterio di essenzialità e di dominanza tra righe. Possiamo applicare il criterio di dominanza tra colonne.

	0	4	12	16	24	28
P0(0,2,4,6)	Χ	X				
P1(0,2,16,18)	Χ			X		
P2(4,6,12,14)		X	Χ			
P3(16,18,24,26)				X	X	
P4(12,14,28,30)			Χ			X
P5(24,26,28,30)					X	Х

Non possiamo applicare il criterio di essenzialità e di dominanza. La tabella degli implicanti è ciclica.

Applichiamo il metodo del branch & bound per trovare la copertura.

Scegliamo come primo implicante P0

Semplificando la tabella eliminando P0 e le relative colonne otteniamo

	12	16	24	28	
P1(0,2,16,18)		Χ			
P2(4,6,12,14)	Χ				
P3(16,18,24,26)		Χ	Χ		
P4(12,14,28,30)	Χ			Χ	
P5(24,26,28,30)			Χ	X	

Poiché P4 domina P2 e P3 domina P1 otteniamo

	12	16	24	28
P3(16,18,24,26)		X	Χ	
P4(12,14,28,30)	Χ			Χ
P5(24,26,28,30)			Χ	Χ

P3 è essenziale poiché è l'unico a coprire 16

P4 è essenziale poiché è l'unico a coprire 12

Poiché P3 e P4 coprono tutti i mintermini, l'insieme di copertura è {P0, P3, P4}

Poiché l'on-set della funzione contiene 12 mintermini e tutti gli implicanti primi individuati al termine della prima fase coprono 4 mintermini, l'insieme di copertura individuato è minimo.

La funzione logica risulta essere in questo caso

f(a,b,c,d,e)=P0+P3+P4= abe+ ace+ bce

Poiché abbiamo trovato una copertura minima potremmo fermarci.

Scegliendo come primo implicante P1

Semplificando la tabella eliminando P1 e le relative colonne otteniamo

	4	12	24	28
P0(0,2,4,6)	Χ			
P2(4,6,12,14)	Χ	Χ		
P3(16,18,24,26)			X	
P4(12,14,28,30)		Χ		X
P5(24,26,28,30)			Χ	Χ

Poiché P2 domina P0 e P5 domina P3 otteniamo

	4	12	24	28
P2(4,6,12,14)	Χ	Χ		
P4(12,14,28,30)		Χ		X
P5(24,26,28,30)			Χ	X

P2 è essenziale poiché è l'unico a coprire 4

P5 è essenziale poiché è l'unico a coprire 24

Poiché P2 e P5 coprono tutti i mintermini, l'insieme di copertura è {P1, P2, P5} Anche in questo caso si ottiene una copertura dei mintermini minima. La funzione logica assume risulta essere in questo caso f(a,b,c,d,e)=P1+P2+P5 = bce+ ace+ abe

Partendo da P2 e da P5 otterremmo lo stesso insieme di copertura di P1 Partendo da P3 e da P4 otterremmo lo stesso insieme di copertura di P0